2个回答
展开全部
十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。
对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。
1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)
2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。
1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)
2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
展开全部
十字相乘法是因式分解中12种方法之一。
另外十一种分别都是:1、分组分解法。2、拆添项法。3、配方法。4、因式定理。5、换元法。6、主元法7、特殊值法。8、待定系数法。9双十字相乘法。10、二次多项式。11、提公因式法。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
另外十一种分别都是:1、分组分解法。2、拆添项法。3、配方法。4、因式定理。5、换元法。6、主元法7、特殊值法。8、待定系数法。9双十字相乘法。10、二次多项式。11、提公因式法。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询