面面平行的性质定理:两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。两个平行平面,分别和第三个平面相交,交线平行。两个平面平行,和一个平面垂直的直线必垂直于另外一个平面。
证明面面平行的所有条件
判定定理:一个平面内的两条相交直线和另一个平面平行,则这两个平面平行。
性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
推论
两个平行平面的垂线平行或重合。
证明:重合的情况很容易证,平行的情况可以根据定理3先判定一条直线与两个平面都垂直,然后根据线面垂直的性质得到两条直线平行。