当x趋向于0时,求极限 lim ((1+x)/(1-x))^cotx 我来答 1个回答 #热议# 为什么有人显老,有人显年轻? 世纪网络17 2022-06-08 · TA获得超过5945个赞 知道小有建树答主 回答量:2426 采纳率:100% 帮助的人:141万 我也去答题访问个人页 关注 展开全部 这种题是属于不定式,1^无穷型的. 做法都是利用重要极限(1+1/x)^x当x趋于0时极限是e. 将原表达式改写成重要极限的形式: 【(1+x)/(1-x)】^(cotx) ={【1+2x/(1-x)】^[(1-x)/(2x)]}^【2x/(1-x) * cotx】 大括号里面就是重要极限的形式了,极限是e; 第二个中括号里面当x趋于0时, lim 2x*cosx/((1-x)*sinx) =limi x/sinx *lim 2cosx/(1-x) =1*2=2, 最后得极限是e^2. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: