复数的幅角怎么求的?
展开全部
复数的幅角详细的过程:
设z=a+bi((a、b∈R)),那么tanθ=b/a,θ为幅角。
1.当 a不等于0时,a+ib的幅角就是arctan b/a 。
2.当a=0时,ib的角是90°,-ib的角是-90°,b是大于0的。
1、复数的辐角在复变函数中,自变量z可以写成 z= r*(cosθ + i sinθ) .r是z的模,即:r = |z|; θ是z的辐角。 在0到2π间的辐角成为辐角主值,记作: arg(z)。
2、辐角主值任意一个复数z=a+bi(a、b∈R)都与复平面内以原点O为始点,复数z在复平面内的对应点Z为终点的向量一一对应。
3、复数的辐角是以x轴的正半轴为始边,向量OZ所在的射线(起点是O)为终边的角θ。任意一个不为零的复数z=a+bi的辐角有无限多个值,且这些值之间相差2π的整数倍。把适合于0≦θ<2π的辐角θ的值,叫做辐角的主值,记作argz。辐角的主值是唯一的,且有Arg(z)=arg(z)+2kπ。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询