勾股定理是一个什么定理?

 我来答
dzyzr
2022-09-17 · 知道合伙人餐饮行家
dzyzr
知道合伙人餐饮行家
采纳数:204 获赞数:32448
河南中医学院在校生

向TA提问 私信TA
展开全部
  勾股定理是一个基本的几何定理。
  在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^+b^=c^ 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。
  中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
  还有的国家称勾股定理为“毕达哥拉斯定理”。在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”。
  蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:"故禹之所以治天下者,此数之所由生也;""此数"指的是"勾三股四弦五"。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
  毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后 的形状好似一棵树,所以被称为毕达哥拉斯树。 直角三角形两个直角边平方的和等于斜边的平方。 两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。 利用不等式A2+B2≥2AB可以证明下面的结论: 三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。
  勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生教材的证明方法采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a²+b²=c²。
选股指标与个股交流
2022-09-22 · 选股指标分享,个股知识交流,一起来成长!
选股指标与个股交流
采纳数:45 获赞数:86

向TA提问 私信TA
展开全部
股票里,勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我的猫咪打呼噜
2022-11-13 · TA获得超过658个赞
知道大有可为答主
回答量:1.1万
采纳率:96%
帮助的人:229万
展开全部
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
加菲尔德证法
加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法”。
在直角梯形ABDE中,∠AEC=∠CDB=90°,△AEC≌△CDB,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
P6Q6X6
2022-11-13 · TA获得超过234个赞
知道大有可为答主
回答量:3817
采纳率:100%
帮助的人:34万
展开全部
勾股定理公式:a+b=c。直角三角形的两条直角边的平方和等于斜边的平方。勾股定理,又称毕达哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面几何中一个基本而重要的定理。
勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
扩展资料:
勾股定理意义
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。
1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式