全概率公式和贝叶斯公式
一、全概率公式
全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。
内容:如果事件B1、B2、B3…Bi构成一个完备事件组,即它们两两互不相容,其和为全集;并且P(Bi)大于0,则对任一事件A有
P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bi)P(Bi)。
或者:p(A)=P(AB1)+P(AB2)+...+P(ABi)),其中A与Bi的关系为交)。
二、贝叶斯公式
贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(A|B)=P(B|A)*P(A)/P(B)。
全概率公式和Bayes公式:
概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和Bayes公式正好起到了这样的作用。
对一个较复杂的事件A,如果能找到一伴随A发生的完备事件组B1、B2```,而计算各个B的概率与条件概率P(A/Bi)相对又要容易些,这是为了计算与事件A有关的概率,可能需要使用全概率公式和Bayes公式。