三次方平方差公式和完全平方公式
三次方平方差公式和完全平方公式为:
平方差公式:a^2-b^2=(a+b)(a-b),完全平方公式为:(a±b)^2=a^2±2ab+b^2。平方差指一个正方形或者平方数,减去另一个正方形或者平方数所得的乘法公式;完全平方可以表示为另一个整数的平方的正整数,也就是说,这个正整数可以写成n^2的形式,其中n为整数。
1、完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍即完全平方公式(a+b)2=a2+b2+2ab两数和的完全平方公式(完全平方和)与(a-b)2=a2+b2-2ab两数差的完全平方公式(完全平方差)。都叫做完全平方公式。
这两个公式的结构特征是:左边是两个相同的二项式相乘,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式。
2、平方差公式:
当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差,即a2-b2=(a+b) x (a-b)。