高数问题,这个圈起来的不定积分是怎么求出来的
2个回答
展开全部
I = ∫tdt/(t^2+b^2)^n = (1/2)∫d(t^2+b^2)/(t^2+b^2)^n
= (1/2)∫(t^2+b^2)^(-n)d(t^2+b^2)
n ≠ 1 时, I = (1/2)[1/(-n+1)](t^2+b^2)^(-n+1)
= [-1/2(n-1)][1/(t^2+b^2)^(n-1)] ;
n = 1 时, I = (1/2)ln(t^2+b^2).
= (1/2)∫(t^2+b^2)^(-n)d(t^2+b^2)
n ≠ 1 时, I = (1/2)[1/(-n+1)](t^2+b^2)^(-n+1)
= [-1/2(n-1)][1/(t^2+b^2)^(n-1)] ;
n = 1 时, I = (1/2)ln(t^2+b^2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询