设A,B分别为m*n,n*t矩阵,求证:若r(A)=n.则r(AB)=r(B) 若r(B)=n,则r(AB)=r(A)
1个回答
展开全部
若R(B)=n,则显然有t>=n
说明B的行秩为n
B能通过初等列变换,变为 [E,0]形式
其中E是n阶单位方阵
就是说存在可逆的Q,合B=[E,O]Q
AB=A[E,O]Q = [A,0]Q
即R(AB)=R([A,O]Q)=R([A,O])=R(A)
若R(A)=n,
则R(AB)=R((AB)')=R(B'A')
只需要对B'A'作前文相似讨论,就可以得到
R(AB)=R(B)
证毕
说明B的行秩为n
B能通过初等列变换,变为 [E,0]形式
其中E是n阶单位方阵
就是说存在可逆的Q,合B=[E,O]Q
AB=A[E,O]Q = [A,0]Q
即R(AB)=R([A,O]Q)=R([A,O])=R(A)
若R(A)=n,
则R(AB)=R((AB)')=R(B'A')
只需要对B'A'作前文相似讨论,就可以得到
R(AB)=R(B)
证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询