初中数学教学数形结合思想应用
初中数学教学数形结合思想应用
几何是初中数学教学的重点,相比代数的抽象化,几何因直观化的图形图像等,赢得了学生的喜欢。将抽象的代数与形象的函数图像结合起来,通过坐标、数轴等方式形象化地呈现出来,更便于学生理解与记忆。
摘要: 传统的灌输性教学模式不利于初中数学教学质量的提升,而利用数形结合的思想将抽象的概念通过图形的方式形象化地展示出来,能够降低学生的思维负担,帮助学生理解数学知识。因此教学中应该积极利用数形结合的思想,不断提升初中数学教学的质量和教学水平。
关键词: 初中数学;数形结合;形象化教学
一、数与代数的数形结合
在初中数学中,代数的学习是重点,也是难点。学生在解答代数问题时,如果仅仅运用代数的解答方法,那么在求解的过程中,则需要处理比较复杂的假设等问题。将抽象的代数与形象的函数图像结合起来,通过坐标、数轴等方式形象化地呈现出来,更便于学生理解与记忆。
如运用坐标的方法处理更多的内容,包括二元一次方程组、平移变换、对称变换、函数等。要有效地运用数轴等来将数与代数图形化,通过数形结合,将抽象的代数转变为具象化的图像。因此,教师应该积极利用数形结合的思想来开展教学工作,引导学生善于画图来将代数转变为图像,通过点对点的对称关系来贯彻数形结合的思想。在教学中,可以将一元二次方程理解为函数。如ax2+bx+c=0,通过转换的方式来架构其代数与函数之间的桥梁,并通过图形来呈现。
在这类方程式中,可以设定y=ax2+bx+c,y=0。通过坐标轴的方式来呈现函数,抛物线与横坐标的两个相交点即是一元二次方程的两个解。对于一些特殊的一元二次方程,它的两个解可能是绝对值,可能是相同的解,可以通过图像与坐标轴交点的.方式呈现出来。在一元二次方程教学中,通过数形结合的思想,将抽象的方程式转化为直观具象的函数图像,并通过图像的方式来呈现x坐标轴、y坐标轴的关系与变化,并引导学生积极利用坐标轴的平移、翻转等数学思维来解答实际中遇到的数学题目。可见,教师应该积极利用数形结合的思想,不仅有助于具象化地进行教学工作,同时更有助于培养学生科学的数学思维,养成学生善于思考、善于整合的科学学习习惯。
二、“空间与图形”中的数形结合
几何是初中数学教学的重点,相比代数的抽象化,几何因直观化的图形图像等,赢得了学生的喜欢。但由于初中学生的空间思维能力开拓不足,使得他们在学习几何图形的空间变化时,容易遇到瓶颈,难以真正理解几何图形的变换思路。教师积极利用数形结合的思想,通过空间与图形的充分结合,来帮助学生更加直观、更加深刻地理解几何知识,培养学生的空间思维能力。教师利用数形结合的思想,应该善于从生活中挖掘素材,积极利用生活中的事物,引导学生自己动手试验,探究几何图形的空间转换能力。如在平面图形的几何变换时,教师可以引导学生通过自己动手的方式来亲自演练平面图形的空间变换。
最典型的例子就是折纸箱或拆剪盒子等,教师可以在课前要求学生准备相应的材料,授课前引导学生一起动手,共同探讨拆剪盒子的空间变换。如图1所示,两个大小不一、连接在一起的正方形,假设小的正方形是大的正方形边长的一半,如何在只剪两刀的情况下,拼出一个全新的大的正方形呢?在实践教学中,教师通过实验的方法引导学生积极动手来自我发掘拆剪方式,但由于学生思维能力有限,在拆剪的过程中,很容易出现混乱,不仅无法精准地找到拆剪的方式,还容易因拆剪方式不科学,造成课时的延误或者思路的混乱。
但如果仔细分析,我们可以发现,题目中说在剪两刀的情况下,构成新的正方形。在转换的过程中,边长发生了改变,但面积是固定的。这样通过计算大小正方形的面积和,很容易得出新的正方形的面积。假设大正方形的边长为4,小正方形的边长为2,那么两个正方形的面积和为20。学生只需要计算出面积为20的正方形的边长,并找出边长在哪即可。可见,在“数形结合”中,不仅可以将代数转变为图像,从抽象过度到具象,同时还可以分析判断几何图形中的“不变量”,从具象过度到抽象。
三、“概率和统计”中的数形结合
在初中数学的教学中,概率是相对较难的科目,概率的抽象性较强,学生在理解概率或计算概率的过程中,如果仅仅通过题目给出的提示,那么无疑会增加学生的思维负担,造成学生抽象思维的困顿。教师可以引导学生在解答概率问题时,将题目中给出的提示,通过统计图表的方式展现出来,这样可以直观地帮助学生分析与判断概率的整体情况,也便于学生全面理解与掌握概率的重点内容。例如,假设“-1—3—-1”为一个循环,那么如此循环10次后,1、2各出现几次呢?在这样的概率题目中,如果学生通过计算的方式,很容易造成思维困难。但通过数形结合的思想,将抽象的概率题目转变为直观的图形,不仅可以快速地解答题目,同时还能够培养学生良好的数学思维,将复杂抽象的题目转变为简单直观的题目,提升数学题目的解答速度和正确率,提升学生对初中数学的学习兴趣。
总之,在初中数学的教学过程中,通过数形结合的思想,能够将抽象的数学题目转变为具象的图形,帮助学生更好地理解数学题目,同时通过数形结合的思想,还能够提升学生学习初中数学的兴趣,有效提升数学课堂的兴趣和活跃程度。此外,数形结合的思想有助于培养学生科学的数学思维,不断开拓学生的思路。
参考文献:
[1]朱文俊.浅谈数形结合思想在初中数学教学中的应用[J].新课程:教研,2010(10).
[2]朱立明,王久成,王晓辉.巧用数形结合思想解决中学数学难题[J].中国数学教育,2011(Z2).
;