密码学基础(四)算法的安全性
1个回答
展开全部
本文首发于 2017-10-30 16:06 原地址:http://www.blockchainbrother.com/article/83
此次和大家谈一谈算法的安全性。根据被破译的难易程度,不同的密码算法具有不同的安全等级。 区块链技术当中一个很重要的组成部分就是密码学,作为从事区块链研究的工程技术人员,应该对密码学有一定的了解。现我想分享一些密码学的基本概念以供交流学习,大家共同学习,更加充实对区块链技术的理解。
算法的安全性
根据被破译的难易程度,不同的密码算法具有不同的安全等级。如果破译算法的代价大于加密数据的价值,那么一般不会有人想去破译它,即你可能是“安全的”。如果破译算法所需的时间比加密数据保密的时间更长,那么你可能也是“安全的”。如果用单密钥加密的数据量比破译算法需要的数据量少得多,那么你也可能是“安全的”。
在这里说“可能”,是因为在密码分析中总有新的突破。另一方面,随着时间的推移,大多数数据的价值会越来越小。
Lars Knudsen曾把破译算法分为不同的类别,安全性的递减顺序为:
(1) 全部破译 (total break)。密码分析者找出密钥K,这样就能得到
(2) 全盘推导 (global deduction)。密码分析者找到一个替代算法A,在不知晓密钥K的情况下等价于得到
(3) 实例(或局部)推导 (instance (or local) deduction)。密码分析者从截获的密文中找出明文。
(4) 信息推导 (information deduction)。密码分析者获得一些有关密钥或明文的信息。这些信息可能是密钥的几位、有关明文格式的信息等。
若不论密码分析者获得多少密文,都没有足够的信息恢复出明文,那么这个算法就是 无条件保密的 (unconditionally secure)。事实上,只有一次一密乱码本,才是不可破的(给出无限多的资源仍然不可破)。所有其他的密码系统在唯密文攻击中都是可破的,只要简单的一个接一个的去尝试每种可能的密钥,并检查所得明文是否有意义,这种方法称为 蛮力攻击 (brute-force attack)。
在密码学中,更关心在计算上不可破译的密码系统。如果算法用(现在或者将来)可得到的资源都不能破译,这个算法则被认为是计算安全的(computationally secure)。准确的说,“可用资源”就是公开数据的分析整理。
可以采用不同的方式衡量攻击方法的复杂性:
1) 数据复杂性 (data complexity)。用于攻击输入所需要的数据量。
2) 处理复杂性 (processing complexity)。完成攻击所需要的时间,也经常称作 工作因素 (work factor)。
3) 存储需求 (storage requirement)。进行攻击所需要的存储量。
作为一个法则,攻击的复杂性取这三个因数的最小值。有些攻击包括这三种复杂性的折中:存储需求越大,攻击可能越快。
复杂性用数量级来表示。如果算法的处理复杂性是2的128次方,那么破译这个算法也需要2的128次方次运算(这些运算可能非常复杂和耗时)。假设我们拥有足够的计算速度去完成每秒100万次的运算,并且用100万个并行处理器完成这个任务,那么仍然需要花费10的19次方年以上才能找到密钥。(而这是宇宙年龄的10亿倍)。
当攻击的复杂性是常数时(除非一些密码分析者发现更好的密码分析攻击),就只取决于计算能力了。在过去的半个世纪中,计算能力已经得到了显著的提高,并且现在这种趋势还在发展。许多的密码分析攻击用并行处理的机制进行计算非常理想,一个任务可以分成亿万个子任务,并且处理之间不需要相互作用。一种算法在现有技术条件下不可破译就草率的宣称是安全的,是很冒险的。从中我们可以得出,一个好的密码系统应设计成能抵御未来多年后的计算能力的发展。
注: 上面提到的 一次一密乱码本 (one-time pad),是由Major Joseph Mauborgne 和AT&T公司的Gilbert Vernam在1917年发明的。(事实上,一次一密乱码本是门限方案的特殊情况)感兴趣的朋友可以查阅相关资料深入了解,在此我就不展开描述了。
此次和大家谈一谈算法的安全性。根据被破译的难易程度,不同的密码算法具有不同的安全等级。 区块链技术当中一个很重要的组成部分就是密码学,作为从事区块链研究的工程技术人员,应该对密码学有一定的了解。现我想分享一些密码学的基本概念以供交流学习,大家共同学习,更加充实对区块链技术的理解。
算法的安全性
根据被破译的难易程度,不同的密码算法具有不同的安全等级。如果破译算法的代价大于加密数据的价值,那么一般不会有人想去破译它,即你可能是“安全的”。如果破译算法所需的时间比加密数据保密的时间更长,那么你可能也是“安全的”。如果用单密钥加密的数据量比破译算法需要的数据量少得多,那么你也可能是“安全的”。
在这里说“可能”,是因为在密码分析中总有新的突破。另一方面,随着时间的推移,大多数数据的价值会越来越小。
Lars Knudsen曾把破译算法分为不同的类别,安全性的递减顺序为:
(1) 全部破译 (total break)。密码分析者找出密钥K,这样就能得到
(2) 全盘推导 (global deduction)。密码分析者找到一个替代算法A,在不知晓密钥K的情况下等价于得到
(3) 实例(或局部)推导 (instance (or local) deduction)。密码分析者从截获的密文中找出明文。
(4) 信息推导 (information deduction)。密码分析者获得一些有关密钥或明文的信息。这些信息可能是密钥的几位、有关明文格式的信息等。
若不论密码分析者获得多少密文,都没有足够的信息恢复出明文,那么这个算法就是 无条件保密的 (unconditionally secure)。事实上,只有一次一密乱码本,才是不可破的(给出无限多的资源仍然不可破)。所有其他的密码系统在唯密文攻击中都是可破的,只要简单的一个接一个的去尝试每种可能的密钥,并检查所得明文是否有意义,这种方法称为 蛮力攻击 (brute-force attack)。
在密码学中,更关心在计算上不可破译的密码系统。如果算法用(现在或者将来)可得到的资源都不能破译,这个算法则被认为是计算安全的(computationally secure)。准确的说,“可用资源”就是公开数据的分析整理。
可以采用不同的方式衡量攻击方法的复杂性:
1) 数据复杂性 (data complexity)。用于攻击输入所需要的数据量。
2) 处理复杂性 (processing complexity)。完成攻击所需要的时间,也经常称作 工作因素 (work factor)。
3) 存储需求 (storage requirement)。进行攻击所需要的存储量。
作为一个法则,攻击的复杂性取这三个因数的最小值。有些攻击包括这三种复杂性的折中:存储需求越大,攻击可能越快。
复杂性用数量级来表示。如果算法的处理复杂性是2的128次方,那么破译这个算法也需要2的128次方次运算(这些运算可能非常复杂和耗时)。假设我们拥有足够的计算速度去完成每秒100万次的运算,并且用100万个并行处理器完成这个任务,那么仍然需要花费10的19次方年以上才能找到密钥。(而这是宇宙年龄的10亿倍)。
当攻击的复杂性是常数时(除非一些密码分析者发现更好的密码分析攻击),就只取决于计算能力了。在过去的半个世纪中,计算能力已经得到了显著的提高,并且现在这种趋势还在发展。许多的密码分析攻击用并行处理的机制进行计算非常理想,一个任务可以分成亿万个子任务,并且处理之间不需要相互作用。一种算法在现有技术条件下不可破译就草率的宣称是安全的,是很冒险的。从中我们可以得出,一个好的密码系统应设计成能抵御未来多年后的计算能力的发展。
注: 上面提到的 一次一密乱码本 (one-time pad),是由Major Joseph Mauborgne 和AT&T公司的Gilbert Vernam在1917年发明的。(事实上,一次一密乱码本是门限方案的特殊情况)感兴趣的朋友可以查阅相关资料深入了解,在此我就不展开描述了。
于中阳 Mercina-zy
此次和大家谈一谈算法的安全性。根据被破译的难易程度,不同的密码算法具有不同的安全等级。 区块链技术当中一个很重要的组成部分就是密码学,作为从事区块链研究的工程技术人员,应该对密码学有一定的了解。现我想分享一些密码学的基本概念以供交流学习,大家共同学习,更加充实对区块链技术的理解。
算法的安全性
根据被破译的难易程度,不同的密码算法具有不同的安全等级。如果破译算法的代价大于加密数据的价值,那么一般不会有人想去破译它,即你可能是“安全的”。如果破译算法所需的时间比加密数据保密的时间更长,那么你可能也是“安全的”。如果用单密钥加密的数据量比破译算法需要的数据量少得多,那么你也可能是“安全的”。
在这里说“可能”,是因为在密码分析中总有新的突破。另一方面,随着时间的推移,大多数数据的价值会越来越小。
Lars Knudsen曾把破译算法分为不同的类别,安全性的递减顺序为:
(1) 全部破译 (total break)。密码分析者找出密钥K,这样就能得到
(2) 全盘推导 (global deduction)。密码分析者找到一个替代算法A,在不知晓密钥K的情况下等价于得到
(3) 实例(或局部)推导 (instance (or local) deduction)。密码分析者从截获的密文中找出明文。
(4) 信息推导 (information deduction)。密码分析者获得一些有关密钥或明文的信息。这些信息可能是密钥的几位、有关明文格式的信息等。
若不论密码分析者获得多少密文,都没有足够的信息恢复出明文,那么这个算法就是 无条件保密的 (unconditionally secure)。事实上,只有一次一密乱码本,才是不可破的(给出无限多的资源仍然不可破)。所有其他的密码系统在唯密文攻击中都是可破的,只要简单的一个接一个的去尝试每种可能的密钥,并检查所得明文是否有意义,这种方法称为 蛮力攻击 (brute-force attack)。
在密码学中,更关心在计算上不可破译的密码系统。如果算法用(现在或者将来)可得到的资源都不能破译,这个算法则被认为是计算安全的(computationally secure)。准确的说,“可用资源”就是公开数据的分析整理。
可以采用不同的方式衡量攻击方法的复杂性:
1) 数据复杂性 (data complexity)。用于攻击输入所需要的数据量。
2) 处理复杂性 (processing complexity)。完成攻击所需要的时间,也经常称作 工作因素 (work factor)。
3) 存储需求 (storage requirement)。进行攻击所需要的存储量。
作为一个法则,攻击的复杂性取这三个因数的最小值。有些攻击包括这三种复杂性的折中:存储需求越大,攻击可能越快。
复杂性用数量级来表示。如果算法的处理复杂性是2的128次方,那么破译这个算法也需要2的128次方次运算(这些运算可能非常复杂和耗时)。假设我们拥有足够的计算速度去完成每秒100万次的运算,并且用100万个并行处理器完成这个任务,那么仍然需要花费10的19次方年以上才能找到密钥。(而这是宇宙年龄的10亿倍)。
当攻击的复杂性是常数时(除非一些密码分析者发现更好的密码分析攻击),就只取决于计算能力了。在过去的半个世纪中,计算能力已经得到了显著的提高,并且现在这种趋势还在发展。许多的密码分析攻击用并行处理的机制进行计算非常理想,一个任务可以分成亿万个子任务,并且处理之间不需要相互作用。一种算法在现有技术条件下不可破译就草率的宣称是安全的,是很冒险的。从中我们可以得出,一个好的密码系统应设计成能抵御未来多年后的计算能力的发展。
注: 上面提到的 一次一密乱码本 (one-time pad),是由Major Joseph Mauborgne 和AT&T公司的Gilbert Vernam在1917年发明的。(事实上,一次一密乱码本是门限方案的特殊情况)感兴趣的朋友可以查阅相关资料深入了解,在此我就不展开描述了。
此次和大家谈一谈算法的安全性。根据被破译的难易程度,不同的密码算法具有不同的安全等级。 区块链技术当中一个很重要的组成部分就是密码学,作为从事区块链研究的工程技术人员,应该对密码学有一定的了解。现我想分享一些密码学的基本概念以供交流学习,大家共同学习,更加充实对区块链技术的理解。
算法的安全性
根据被破译的难易程度,不同的密码算法具有不同的安全等级。如果破译算法的代价大于加密数据的价值,那么一般不会有人想去破译它,即你可能是“安全的”。如果破译算法所需的时间比加密数据保密的时间更长,那么你可能也是“安全的”。如果用单密钥加密的数据量比破译算法需要的数据量少得多,那么你也可能是“安全的”。
在这里说“可能”,是因为在密码分析中总有新的突破。另一方面,随着时间的推移,大多数数据的价值会越来越小。
Lars Knudsen曾把破译算法分为不同的类别,安全性的递减顺序为:
(1) 全部破译 (total break)。密码分析者找出密钥K,这样就能得到
(2) 全盘推导 (global deduction)。密码分析者找到一个替代算法A,在不知晓密钥K的情况下等价于得到
(3) 实例(或局部)推导 (instance (or local) deduction)。密码分析者从截获的密文中找出明文。
(4) 信息推导 (information deduction)。密码分析者获得一些有关密钥或明文的信息。这些信息可能是密钥的几位、有关明文格式的信息等。
若不论密码分析者获得多少密文,都没有足够的信息恢复出明文,那么这个算法就是 无条件保密的 (unconditionally secure)。事实上,只有一次一密乱码本,才是不可破的(给出无限多的资源仍然不可破)。所有其他的密码系统在唯密文攻击中都是可破的,只要简单的一个接一个的去尝试每种可能的密钥,并检查所得明文是否有意义,这种方法称为 蛮力攻击 (brute-force attack)。
在密码学中,更关心在计算上不可破译的密码系统。如果算法用(现在或者将来)可得到的资源都不能破译,这个算法则被认为是计算安全的(computationally secure)。准确的说,“可用资源”就是公开数据的分析整理。
可以采用不同的方式衡量攻击方法的复杂性:
1) 数据复杂性 (data complexity)。用于攻击输入所需要的数据量。
2) 处理复杂性 (processing complexity)。完成攻击所需要的时间,也经常称作 工作因素 (work factor)。
3) 存储需求 (storage requirement)。进行攻击所需要的存储量。
作为一个法则,攻击的复杂性取这三个因数的最小值。有些攻击包括这三种复杂性的折中:存储需求越大,攻击可能越快。
复杂性用数量级来表示。如果算法的处理复杂性是2的128次方,那么破译这个算法也需要2的128次方次运算(这些运算可能非常复杂和耗时)。假设我们拥有足够的计算速度去完成每秒100万次的运算,并且用100万个并行处理器完成这个任务,那么仍然需要花费10的19次方年以上才能找到密钥。(而这是宇宙年龄的10亿倍)。
当攻击的复杂性是常数时(除非一些密码分析者发现更好的密码分析攻击),就只取决于计算能力了。在过去的半个世纪中,计算能力已经得到了显著的提高,并且现在这种趋势还在发展。许多的密码分析攻击用并行处理的机制进行计算非常理想,一个任务可以分成亿万个子任务,并且处理之间不需要相互作用。一种算法在现有技术条件下不可破译就草率的宣称是安全的,是很冒险的。从中我们可以得出,一个好的密码系统应设计成能抵御未来多年后的计算能力的发展。
注: 上面提到的 一次一密乱码本 (one-time pad),是由Major Joseph Mauborgne 和AT&T公司的Gilbert Vernam在1917年发明的。(事实上,一次一密乱码本是门限方案的特殊情况)感兴趣的朋友可以查阅相关资料深入了解,在此我就不展开描述了。
于中阳 Mercina-zy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询