二阶连续偏导数推出什么?二阶混合偏导数相等吗
展开全部
二阶连续偏导数推出二阶混合偏导数相等。
实际上如果对x, y的偏导在某点P的邻域存在,在P处可微,也可以推导处二阶混合偏导可交换的性质。
首先偏导数是针对二元或二元以上的函数,导数是针对一元函数;
二阶偏导数连续,就是说二阶偏导数存在,并且二阶偏导数是连续函数;
二阶导数连续就是说二阶导数存在,并且这个二阶导函数是连续函数;
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询