e的x次方分之一怎么积分?
1个回答
展开全部
1+e^x分之一的积分是:
∫1/(1+e的x次)dx
=∫e的-x次/(1+e的-x次)dx 同乘e的-x次
=-∫1/(1+e的-x次)d(1+e的-x次)
=-ln(1+e的-x次)+C
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F,即F ′ = f。 不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
积分的一个严格的数学定义由波恩哈德·黎曼给出,称为“黎曼积分”,黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替,对微分形式的积分是微分几何中的基本概念。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询