空间向量基本定理

 我来答
教育小主6
高能答主

2022-09-29 · 玩转教育知识,我们一起来!
教育小主6
采纳数:252 获赞数:11105

向TA提问 私信TA
展开全部

空间向量基本定理有三个,具体如下:

1、共线向量定理

两个空间向量a, b向量(b向量不等于0),其中a与b共线的充要条件是存在唯一的实数λ,使a=λb。

2、共面向量定理

如果两个向量a, b不共线,则向量c与向量a, b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。

3、空间向量分解定理

如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。

任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。

定理的问题

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行。

二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

聊电子的小璇
高能答主

2022-09-29 · 用力答题,不用力生活
知道小有建树答主
回答量:3654
采纳率:100%
帮助的人:58.5万
展开全部

空间向量基本定理是用数学方式表达的一种空间概念,表达式为p=xa+yb+zc d=AB*AB*n。若存在三个不共面向量a,b,c,那么对空间任一向量p,存在唯一有序实数组{x,y,z}使得成立。证明如下:

∵x+y+z=1

∴ z=1-x-y又∵OP=xOA+yOB+zOC

∴ OP =xOA+yOB+(1-x-y)OC

OP=x(OA-OC)+y(OB-OC)+OC

OP-OC=x(OA-OC)+y(OB-OC)

∴ CP=xCA+yCB

又由已知条件A、B、C三点不共线可得CA、CB是不共线向量

∴ 根据平面向量的基本定理可知,点P位于平面ABC内

∴ 充分性成立

空间向量基本定理推论

1、空间中任意不共面的三个向量都可以构成空间的一个基底。

2、由于零向量可以认为与任意一个向量共线,与任意两个向量共面,所以三个向量不共面,就隐含着它们都不是零向量。

3、一个基底是一组向量,一个基向量是基底中的某一个向量。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式