有界数列是否一定收敛

 我来答
惠企百科
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

有界数列不一定收敛,比如数列{b(n)},b(n)=(-1)^n,|b(n)|<=1 {b(n)}有界,b(n)为摆动数列,但是不收敛。

数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标)=B,称数列{An}有下界B,如果同时存在A、B使得数列{An}的值在区间[A,B]内,数列有界。



扩展资料:

收敛数列与其子数列间的关系,子数列也是收敛数列且极限为a恒有|Xn|<M,若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。

如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式