有界数列是否一定收敛
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
有界数列不一定收敛,比如数列{b(n)},b(n)=(-1)^n,|b(n)|<=1 {b(n)}有界,b(n)为摆动数列,但是不收敛。
数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标)=B,称数列{An}有下界B,如果同时存在A、B使得数列{An}的值在区间[A,B]内,数列有界。
扩展资料:
收敛数列与其子数列间的关系,子数列也是收敛数列且极限为a恒有|Xn|<M,若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。
如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |