机器学习中哪些分类器模型属于线性分类器?哪些属于非线性分类器?
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
线性分类器:单层感知器网络、贝叶斯。
影响一个分类器错误率的因素:
训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。
属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。
扩展资料:
决策树分类器:这个过程类似于通过一个植物的特征来辨认植物。可以应用这样的分类器来判定某人的信用程度,比如,一个决策树可能会断定“一个有家、拥有一辆价值在1.5 万到2.3 万美元之间的轿车、有两个孩子的人”拥有良好的信用。
决策树生成器从一个“训练集”中生成决策树。SGI 公司的数据挖掘工具MineSet 所提供的可视化工具使用树图来显示决策树分类器的结构,在图中,每一个决策用树的一个节点来表示。
参考资料来源:百度百科-分类器
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |