设R(A)为矩阵的秩,为何R(E-A)=R(A-E)?怎么证?
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
利用了矩阵的秩的性质
矩阵乘以一个非零常数,秩不变
k为非零常数时,R(kA)=R(A)
令k=-1
R(E-A)=R[(-1)×(A-E)]=R(A-E)
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
扩展资料:
方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或 。
m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。即:秩(AB)≤min(秩(A),秩(B)) 推广到若干个矩阵的情况,就是:秩(A1A2...Am)≤min(秩(A1),秩(A2),...秩(Am))
参考资料:百度百科——矩阵的秩
2024-10-28 广告