复数的实际意义是什么吗??
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
1、系统分析
在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。
2、信号分析
信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。
3、反常积分
在应用层面,复分析常用以计算某些实值的反常函数,藉由复值函数得出。方法有多种,见围道积分方法。
4、量子力学
量子力学中复数是十分重要的,因其理论是建基于复数域上无限维的希尔伯特空间。
5、相对论
如将时间变数视为虚数的话便可简化一些狭义和广义相对论中的时空度量 (Metric) 方程。
6、应用数学
实际应用中,求解给定差分方程模型的系统,通常首先找出线性差分方程对应的特征方程的所有复特征根r,再将系统以形为f(t) =e的基函数的线性组合表示。
7、流体力学
复函数于流体力学中可描述二维势流(2D Potential Flow)。
8、碎形
一些碎形如曼德勃罗集合和茹利亚集(Julia set) 是建基于复平面上的点的。
9、实变初等函数
我们把数学分析中基本的实变初等函数推广到复变初等函数,使得定义的各种复变初等函数,当z变为实变数x(y=0)时与相应的实变初等函数相同。
扩展资料:
复数,最早是在解一元三次方程的时候引入的,当时解一元三次方程,很难解开,引入了一个符号设为J,J * J = -1,可以比较容易的解了这个方程,但带j的那个解,不被大家认可。
这是虚数第一次出现,但到了后来,高次解之后,大家发现,j越来越绕不开,并且有规律,N次方程,就有N个包含带J的解,于是大家认识到一点,一个高次方程,要想解它的解,最佳的捷径就是从J入手。
到了高斯时期,高斯对这个J进行了研究,那个时候是笛卡尔坐标系,但他第一个把J引入坐标系,于是出来了复数坐标系。
他把这个物理意义跟平面坐标的矢量四则运算结合起来,若J * J = -1,恰好满足一个平面坐标的矢量四则运算。
那个时候他意识到,J真实存在,J的物理意义就是表示另外一个坐标轴,它是一个坐标轴的符号,为了区别X轴,引入Y轴,那么必须要用符号标记,所以J是坐标Y轴的符号,这就是它的物理意义,于是就有了a+bJ。
参考资料来源:百度百科-复数