观察下列算式:1=1,3+5=8,7+9+11=27,13+15+17+19=64,21+23+25+27+29=125?
展开全部
解题思路:仔细分析前5行式子,总结出规律,由此猜测第n行的式子.
1=(12-1+1)=1=13,
3+5=(22-2+1)+[(22-2+1)+2]=8=23,
7+9+11=27=(32-3+1)+[(32-3+1)+2]+[(32-3+1)+4]=27=33,
13+15+17+19=(42-4+1)+[(42-4+1)+2]+[(42-4+1)+4]+[(42-4+1)+6]=64=43,
21+23+25+27+29=(52-5+1)+[(52-5+1)+2]+[(52-5+1)+4]+[(52-5+1)+6]+[(52-5+1)+8]=125=53,
…
总结规律,得到第n行的式子为:(n2-n+1)+[(n2-n+1)+2]+[(n2-n+1)+4]+…+[(n2-n+1)+2(n-1)]=n3.
故答案为:(n2-n+1)+[(n2-n+1)+2]+[(n2-n+1)+4]+…+[(n2-n+1)+2(n-1)]=n3.
,7,观察下列算式:
1=1,
3+5=8,
7+9+11=27,
13+15+17+19=64,
21+23+25+27+29=125,
…
猜测第n行的式子为______.
1=(12-1+1)=1=13,
3+5=(22-2+1)+[(22-2+1)+2]=8=23,
7+9+11=27=(32-3+1)+[(32-3+1)+2]+[(32-3+1)+4]=27=33,
13+15+17+19=(42-4+1)+[(42-4+1)+2]+[(42-4+1)+4]+[(42-4+1)+6]=64=43,
21+23+25+27+29=(52-5+1)+[(52-5+1)+2]+[(52-5+1)+4]+[(52-5+1)+6]+[(52-5+1)+8]=125=53,
…
总结规律,得到第n行的式子为:(n2-n+1)+[(n2-n+1)+2]+[(n2-n+1)+4]+…+[(n2-n+1)+2(n-1)]=n3.
故答案为:(n2-n+1)+[(n2-n+1)+2]+[(n2-n+1)+4]+…+[(n2-n+1)+2(n-1)]=n3.
,7,观察下列算式:
1=1,
3+5=8,
7+9+11=27,
13+15+17+19=64,
21+23+25+27+29=125,
…
猜测第n行的式子为______.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询