n+1个n维向量线性相关么?为什么

 我来答
妖感肉灵10
2022-12-11 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.3亿
展开全部

以n+1个n维向量作为列向量构成的矩阵的秩不超过n(矩阵的秩不超过其行数和列数中小的那个);所以 r(A)<=n;所以 A 的列向量组的秩 <= n,即 n+1个n维向量 的秩 <=n,故线性相关。

在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 ,反之称为线性相关。

扩展资料

注意:

1、对于任一向量组而言,,不是线性无关的就是线性相关的。

2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。

3、包含零向量的任何向量组是线性相关的。

4、含有相同向量的向量组必线性相关。

5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】

6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)【整体无关,局部无关】

7、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。【无关组的加长组仍无关】

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式