点到平面的距离怎么求?
2个回答
展开全部
点到平面的距离公式:
d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。
文字表示:d=|向量AB*向量n|/向量n的模长。
d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。
点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。
拓展资料
计算一点到平面的距离,通常可通过向量法或测量法求得。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。d=向量AB×向量n的和的模长÷向量n的模长,d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,求出平面外那点和所取的那点所构成的向量,记为a,点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询