正交矩阵相似对角化;可逆矩阵相似对角化;可对角化;这三者有什么区别?

 我来答
刺任芹O
2022-11-17 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:9017万
展开全部

P^-1AP = 对角矩阵。

正交对角化要求 P 是正交矩阵, 即P可逆且 P^-1 = P^T。
即是相似变换又是合同变换, 用于二次型。

可逆矩阵相似对角化。
一般考虑的是方阵, 并不要求方阵可逆, 要求 P 可逆。

可对角化就是A可相似对角化, 即存在可逆矩阵P使得 P^-1AP = 对角矩阵。

扩展资料:

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4.A的列向量组也是正交单位向量组。

5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

参考资料来源:百度百科-正交矩阵



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式