莱布尼茨公式用于对两个函数的乘积求取其高阶导数。
莱布尼茨公式:(uv)ⁿ=∑(n,k=0) C(k,n) · u^(n-k) · v^(k)
符号含义:
C(n,k)组合符号即n取k的组合,u^(n-k)即u的n-k阶导数, v^(k)即v的k阶导数。
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。
莱布尼茨公式给出了含参变量常义积分在积分符号下的求导法则。莱布尼茨是德国自然科学家,客观唯心主义哲学家,启蒙思想家。生于莱比锡,死于汉诺威。早年就读于莱比锡大学,于1663年获得学士学位。1667年又获阿尔特多夫大学法学博士学位。曾任美因茨选帝侯的外交官、宫廷顾问、图书馆长等职。1770年当选为英国皇家学会会员。
莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。
推导过程
如果存在函数u=u(x)与v=v(x),且它们在点x处都具有n阶导数,那么显而易见的,
u(x) ± v(x) 在x处也具有n阶导数,且 (u±v)(n) = u(n)± v(n)
至于u(x) × v(x) 的n阶导数则较为复杂,按照基本求导法则和公式,可以得到:
(uv)' = u'v + uv'
(uv)'' = u''v + 2u'v' + uv''
(uv)''' = u'''v + 3u''v' + 3u'v'' + uv'''
…………
上式便称为莱布尼茨公式(Leibniz公式)
由于名称相似,不少人将牛顿-莱布尼茨公式与莱布尼茨公式相混淆,事实上他们是两个完全不同的公式。
牛顿-莱布尼茨公式是微积分学中的一个重要公式,它把不定积分与定积分相联系了起来,也让定积分的运算有了一个完善、令人满意的方法。而莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。
二者存在本质上的区别。