等比数列通项公式是什么呢?
2个回答
2022-12-20
展开全部
等比数列
对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
那么,通项公式为an=an-1*q(n,n-1均为下标)
(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:
a2=a1*q,
a3=a2*q,
a4=a3*q,
````````
an=an-1*q,
将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
此外,当q=1时该数列的前n项和Tn=a1*n
当q≠1时该数列前n项的和Tn=a1*(1-q^(n))/(1-q).
对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
那么,通项公式为an=an-1*q(n,n-1均为下标)
(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:
a2=a1*q,
a3=a2*q,
a4=a3*q,
````````
an=an-1*q,
将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
此外,当q=1时该数列的前n项和Tn=a1*n
当q≠1时该数列前n项的和Tn=a1*(1-q^(n))/(1-q).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询