A平方-A-2E=O证明A及A+2E 都可逆,并求A的逆阵及(A+2E)的逆阵 我来答 1个回答 #热议# 海关有哪些禁运商品?查到后怎么办? 世纪网络17 2022-08-28 · TA获得超过5919个赞 知道小有建树答主 回答量:2426 采纳率:100% 帮助的人:139万 我也去答题访问个人页 关注 展开全部 原式 A^2-A=2E A(A-E)=2E (提取时 补 E 是关键) A(1/2A-1/2E)=E 所以A可逆 A^2-A=2E A(A+2E-3E)=2E A(A+2E)-3(A+2E)=2E-6E=-4E (配A+2E 是关键) (A-3E)(A+2E)=-4E (-1/4A+3/4E) (A+2E)=E 所以(A+2E)可逆 其逆... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-09-15 设方阵A满足A的平方-A-2E=O证明A及A+2E都可逆,并求A和A+2E的逆 2022-08-09 如果方阵A满足A平方-A-2E=0,试证A+2E可逆,并求A+2E的逆 2022-09-11 设方阵A满足A*A-A-2E=O,证明A+2E和A都可逆,并求A的逆阵和A+2E的逆阵. 2022-08-29 已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵 2022-08-06 已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵 2022-09-13 设方阵A满足的平方-2A-E=0 ,证明A-2E 可逆,并求 (A-2E)的-1次方 2022-06-15 设方阵A满足A^2-2A+3E=0,证明A+E可逆,并求(A+E)^-1 2022-08-19 设方阵A满足 A-A-2E=O 证明A可逆 并求A的逆矩阵. 为你推荐: