矩阵行列式的性质

 我来答
新科技17
2022-08-24 · TA获得超过5902个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.8万
展开全部
性质 1:单位矩阵的行列式为 1 ,与之对应的是单位立方体的体积是 1
性质 2:当两行进行交换的时候行列式改变符号。
性质 3:行列式是单独每一行的线性函数(其它行不变)。

扩展资料

  在线性代数,行列式是一个函数,其定义域为的矩阵a,值域为一个标量,写作det(a)。在本质上,行列式描述的是在n维空间中,一个线性变换所形成的“平行多面体”的“体积”。行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用。

  行列式概念的最初引进是在解线性方程组的过程中。行列式被用来确定线性方程组解的个数,以及形式。随后,行列式在许多领域都逐渐显现出重要的意义和作用。于是有了线性自同态和向量组的行列式的定义。

  行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质。

  若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的'列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式