求X趋向于0时,lim(tanX-sinX)/(sin2X)^3
1个回答
展开全部
不对。这个是0/0的极限
(tanx-sinx)/(sin2x)^3
=(sinx/cosx-sinx)/(2sinxcosx)^3
=sinx(1-cosx)/[8(sinx)^3*(cosx)^4]
=(1-cosx)/[8(sinx)^2*(cosx)^4]
=2[sin(x/2)]^2/{8[2sin(x/2)cos(x/2)]^2*(cosx)^4}
=1/{16(cos(x/2)]^2*cosx)^4}
∴lim(x->0)(tanx-cosx)/(sin2x)^3
=1/lim(x->0){16[cos(x/2)]^2*(cosx)^4}
=1/(16*1^2*1^4)
=1/16.
(tanx-sinx)/(sin2x)^3
=(sinx/cosx-sinx)/(2sinxcosx)^3
=sinx(1-cosx)/[8(sinx)^3*(cosx)^4]
=(1-cosx)/[8(sinx)^2*(cosx)^4]
=2[sin(x/2)]^2/{8[2sin(x/2)cos(x/2)]^2*(cosx)^4}
=1/{16(cos(x/2)]^2*cosx)^4}
∴lim(x->0)(tanx-cosx)/(sin2x)^3
=1/lim(x->0){16[cos(x/2)]^2*(cosx)^4}
=1/(16*1^2*1^4)
=1/16.
参考资料: http://zhidao.baidu.com/question/138216088.html
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询