log函数的图象是什么样子的?
1个回答
展开全部
当a>0且a≠1时,m>0,n>0,那么:
log(a)(mn)=log(a)(m)+log(a)(n)
log(a)(m/n)=log(a)(m)-log(a)(n)
log(a)(m^n)=nlog(a)(m) (n∈r)
换底公式:log(a)m=log(b)m/log(b)a (b>0且b≠1)
a^(log(b)n)=n^(log(b)a)
在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越大,函数值越小。(0<a<1时)
扩展资料:
对数函数的一般形式为y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
因此指数函数里对于a的规定(a>0且a≠1),因此对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询