为什么在求不定积分的极限的时候不允许直接带上1?

 我来答
Dilraba学长
高粉答主

2023-04-20 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411046

向TA提问 私信TA
展开全部

求极限的时候,只有在积分项相乘并且其极限值为常数的时候才可以代入并提出去。你的第二个表达式,因为它是和式,所以只是分别在求极限而已,不能 直接带成1。详细如图所示:

扩展资料

极限性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、保号性:若  (或<0),则对任何  (a<0时则是  ),存在N>0,使n>N时有  (相应的xn<m)。

4、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有  ,则  (若条件换为xn>yn ,结论不变)。

5、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列  也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式