有大佬知道这两道定积分证明题怎么做吗?
展开全部
1) 根据定积分基本性质
∫(a,a+T) f(x)dx =∫(0,a+T) f(x)dx -∫(0,a) f(x)dx
= ∫(0,T) f(x)dx +∫(T,a+T) f(x)dx -∫(0,a) f(x)dx
对中间积分取t=x-T带入得到
= ∫(0,T) f(x)dx +∫(0,a) f(t+T)dT -∫(0,a) f(x)dx
= ∫(0,T) f(x)dx +∫(0,a) f(t)dT -∫(0,a) f(x)dx
= ∫(0,T) f(x)dx
2) 第二题更简单
∫(0,nT) f(x)dx = ∫(0,T) f(x)dx+∫(T,2T) f(x)dx+...+∫(nT-T,nT) f(x)dx
应用1)的结论得到=∫(0,T) f(x)dx +∫(0,T) f(x)dx+。。。+∫(0,T) f(x)dx=n∫(0,T) f(x)dx
∫(0,npi) 根号(1+sin2x)dx=n∫(0,pi) 根号(1+sin2x)dx
=n∫(0,pi) 根号((sinx)^2+2sinxcosx + (cosx)^2)dx
=n∫(0,pi) |sinx +cosx| dx
=n∫(0,pi/2)sinx +cosx dx + n ∫(pi/2,pi)sinx -cosx dx
=n∫(0,pi/2)sinx +cosx dx + n∫(0,pi/2)cosx -sinx dx
=2n∫(0,pi/2)cosx dx = 2nsinx|0,pi/2 = 2n
∫(a,a+T) f(x)dx =∫(0,a+T) f(x)dx -∫(0,a) f(x)dx
= ∫(0,T) f(x)dx +∫(T,a+T) f(x)dx -∫(0,a) f(x)dx
对中间积分取t=x-T带入得到
= ∫(0,T) f(x)dx +∫(0,a) f(t+T)dT -∫(0,a) f(x)dx
= ∫(0,T) f(x)dx +∫(0,a) f(t)dT -∫(0,a) f(x)dx
= ∫(0,T) f(x)dx
2) 第二题更简单
∫(0,nT) f(x)dx = ∫(0,T) f(x)dx+∫(T,2T) f(x)dx+...+∫(nT-T,nT) f(x)dx
应用1)的结论得到=∫(0,T) f(x)dx +∫(0,T) f(x)dx+。。。+∫(0,T) f(x)dx=n∫(0,T) f(x)dx
∫(0,npi) 根号(1+sin2x)dx=n∫(0,pi) 根号(1+sin2x)dx
=n∫(0,pi) 根号((sinx)^2+2sinxcosx + (cosx)^2)dx
=n∫(0,pi) |sinx +cosx| dx
=n∫(0,pi/2)sinx +cosx dx + n ∫(pi/2,pi)sinx -cosx dx
=n∫(0,pi/2)sinx +cosx dx + n∫(0,pi/2)cosx -sinx dx
=2n∫(0,pi/2)cosx dx = 2nsinx|0,pi/2 = 2n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算是继电保护中的一项重要工作,旨在通过分析计算和整定,确定保护配置方式和整定值,以满足电力系统安全稳定运行的要求。在进行整定计算时,需要考虑到电力系统的各种因素,如电压等级、线路长度、变压器容量、负载情况等等,以及各种保护设备的特性、...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询