2017苏教版六年级上册寒假作业答案(数学)
1个回答
展开全部
苏教版2017六年级上册寒假作业答案(数学)
1. 计算.
(1)甲,乙两数之和加上甲数是220,加上乙数是170,求甲,乙两数之和.
(2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式.
2. 填空.
(1)在下面的()内填上适当的数字,使得三个数的平均数是140.
( ),( )8,( )27
(2)按规律填数 5,20,45,80,125,_____________,245.
3. 一个台阶图的每一层都由黑色和白色的正方形交错组成.且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆
5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同.分得苹果个数最多的小朋友,至少得到几个苹果
6. 书架有甲,乙,丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层.这时,甲,乙,丙三层的书同样多.求原来三层各有多少本书
7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡.
8. 在下面的数表中,第100行左边的第一个数是什么
5 4 3 2
6 7 8 9
13 12 11 10
14 15 16 17
21 20 19 18
_______________________________________
9. 两个孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,问扶梯有多少级梯级
10. 有一个五位奇数,将这个五位奇数中的所有2都换成5,所有5也都换成2,其它数保持不变,得到一个新的五位数,若新五位数的一半比原五位数大1,那么原五位数是多少
试题一答案
1. (1)甲,乙两数之和加上甲数是220,加上乙数是170,求甲,乙两数之和.
据题意
2甲+2乙=220 (1)
甲+2乙=170 (2)
(1)式+(2)式得到
3甲+3乙=390
所以,甲,乙两数之和为
390÷3=130
(2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式.
因为商增加了3,可求得除数
(151-115)÷3=36÷3
=12
所以,所求的除式为:
115÷12=9……7
2. (1)在下面的( )内填上适当的数字,使得三个数的平均数是140.
(5),(8)8,(3)27
三数的平均数是140,则三数之和:
140×3=420
第三个数应为327
420-327=93
显然,第一个数是5,第二个数是88.
(2)按规律填数
5,20,45,80,125,180,245.
20=5+15
45=20+25
80=45+35
125=80+45
所以下一个数应为:
125+55=180
3. 一个台阶图的每一层都由黑色和白色的正方形交错组成.且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少
观察图形可知,每层的白色正方形的个数等于层数减1,所以,第2000层中应有1999个白色正方形.
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆
假设48辆车都是汽车
应有车轮数为
48×4=192
所以,摩托车的数量为
(48×4-172)÷(4-1)
=20(辆)
汽车有48-20=28(辆)
5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同.分得苹果个数最多的小朋友,至少得到几个苹果
所有人的苹果个数应当尽量接近,10个小朋友先分别得到:1,2,3……10个苹果,剩下的苹果除以10得
[100-(1+2+3+……+10)]÷10
=45÷10=4……5
所以,再给每个小朋友增加4个苹果,后5个小朋友每人再增加1个苹果,10个小朋友的苹果个数应分别为:
5,6,7,8,9,11,12,13,14,15.
所以,得到苹果最多的小朋友至少得15个.
6. 书架有甲,乙,丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层.这时,甲,乙,丙三层的书同样多.求原来三层各有多少本书
列表,用倒推法(从下往上填)
甲
乙
丙
初始状态
88
56
48
甲给乙后
32
112
48
乙给丙后
32
64
96
丙给甲后
64
64
64
甲,乙,丙三层原有书分别为:88本,56本,48本.
7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡.
各位数字之和为34,小于10000的数只能是四位数.
所以,各鸡场养鸡的只数,是只能由9,9,9,7或9,9,8,8组成的四位数,据题意各不相同,知10个数分别为:
7997,9799,9979,9997,8899,8989,8998,9889,9898,9988.
它们的和为:94435(只).
1. 计算.
(1)甲,乙两数之和加上甲数是220,加上乙数是170,求甲,乙两数之和.
(2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式.
2. 填空.
(1)在下面的()内填上适当的数字,使得三个数的平均数是140.
( ),( )8,( )27
(2)按规律填数 5,20,45,80,125,_____________,245.
3. 一个台阶图的每一层都由黑色和白色的正方形交错组成.且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆
5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同.分得苹果个数最多的小朋友,至少得到几个苹果
6. 书架有甲,乙,丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层.这时,甲,乙,丙三层的书同样多.求原来三层各有多少本书
7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡.
8. 在下面的数表中,第100行左边的第一个数是什么
5 4 3 2
6 7 8 9
13 12 11 10
14 15 16 17
21 20 19 18
_______________________________________
9. 两个孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,问扶梯有多少级梯级
10. 有一个五位奇数,将这个五位奇数中的所有2都换成5,所有5也都换成2,其它数保持不变,得到一个新的五位数,若新五位数的一半比原五位数大1,那么原五位数是多少
试题一答案
1. (1)甲,乙两数之和加上甲数是220,加上乙数是170,求甲,乙两数之和.
据题意
2甲+2乙=220 (1)
甲+2乙=170 (2)
(1)式+(2)式得到
3甲+3乙=390
所以,甲,乙两数之和为
390÷3=130
(2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式.
因为商增加了3,可求得除数
(151-115)÷3=36÷3
=12
所以,所求的除式为:
115÷12=9……7
2. (1)在下面的( )内填上适当的数字,使得三个数的平均数是140.
(5),(8)8,(3)27
三数的平均数是140,则三数之和:
140×3=420
第三个数应为327
420-327=93
显然,第一个数是5,第二个数是88.
(2)按规律填数
5,20,45,80,125,180,245.
20=5+15
45=20+25
80=45+35
125=80+45
所以下一个数应为:
125+55=180
3. 一个台阶图的每一层都由黑色和白色的正方形交错组成.且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少
观察图形可知,每层的白色正方形的个数等于层数减1,所以,第2000层中应有1999个白色正方形.
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆
假设48辆车都是汽车
应有车轮数为
48×4=192
所以,摩托车的数量为
(48×4-172)÷(4-1)
=20(辆)
汽车有48-20=28(辆)
5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同.分得苹果个数最多的小朋友,至少得到几个苹果
所有人的苹果个数应当尽量接近,10个小朋友先分别得到:1,2,3……10个苹果,剩下的苹果除以10得
[100-(1+2+3+……+10)]÷10
=45÷10=4……5
所以,再给每个小朋友增加4个苹果,后5个小朋友每人再增加1个苹果,10个小朋友的苹果个数应分别为:
5,6,7,8,9,11,12,13,14,15.
所以,得到苹果最多的小朋友至少得15个.
6. 书架有甲,乙,丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层.这时,甲,乙,丙三层的书同样多.求原来三层各有多少本书
列表,用倒推法(从下往上填)
甲
乙
丙
初始状态
88
56
48
甲给乙后
32
112
48
乙给丙后
32
64
96
丙给甲后
64
64
64
甲,乙,丙三层原有书分别为:88本,56本,48本.
7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡.
各位数字之和为34,小于10000的数只能是四位数.
所以,各鸡场养鸡的只数,是只能由9,9,9,7或9,9,8,8组成的四位数,据题意各不相同,知10个数分别为:
7997,9799,9979,9997,8899,8989,8998,9889,9898,9988.
它们的和为:94435(只).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询