数学高考必背重点公式

 我来答
百度网友7fc1e7b
2023-03-23 · 超过12用户采纳过TA的回答
知道答主
回答量:428
采纳率:100%
帮助的人:6.4万
展开全部

高考数学必备公式如下:

1.方程:

(1)一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

(2)根与系数的关系:X1+X2=-b/a X1*X2=c/a 

(3)判别式:

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

2.三角不等式:

|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

3.乘法与因式分解:

a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

4.三角函数:

(1)两角和公式:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

(2)倍角公式:

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

(3)半角公式:

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

(4)和差化积:

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

(5)正弦定理:a/sinA=b/sinB=c/sinC=2R 

(6)余弦定理:b2=a2+c2-2accosB

5.数列前n项和(A~C):

A:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

B:2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

C:13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

6.圆的标准方程 :

(x-a)2+(y-b)2=r2

7.圆的一般方程:

x2+y2+Dx+Ey+F=0

8.抛物线标准方程:

y2=2px y2=-2px;x2=2py x2=-2py

9.面积公式:

(1)直棱柱侧面积:S=c*h;斜棱柱侧面积:S=c'*h

(2)正棱锥侧面积 S=1/2c*h’

(3)正棱台侧面积:S=1/2(c+c')h'

(4)圆台侧面积:S=1/2(c+c')l=pi(R+r)l 

(5)圆柱侧面积:S=c*h=2pi*h

(6)圆锥侧面积:S=1/2*c*l=pi*r*l

(7)弧长公式:l=a*r;扇形面积公式 s=1/2*l*r

(8)锥体体积公式:V=1/3*S*H(圆锥体体积公式 V=1/3*pi*r2h)

(9)斜棱柱体积:V=S'L

(10)柱体体积公式:V=s*h;圆柱体:V=pi*r2h

希望对您有帮助,谢谢!

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式