如何求函数的最大值?
1个回答
展开全部
I = ∫e^x(sinx)^2dx = (1/2)∫e^x(1-cos2x)dx = (1/2)e^x - (1/2)∫e^xcos2xdx
I1 = ∫e^xcos2xdx = ∫cos2xde^x = e^xcos2x + 2∫e^xsin2xdx
= e^xcos2x + 2∫sin2xde^x = e^x(cos2x+2sin2x) - 4I1
解得 I1 = (1/5)e^x(cos2x+2sin2x)
I = (1/2)e^x - (1/10)e^x(cos2x+2sin2x) + C
I1 = ∫e^xcos2xdx = ∫cos2xde^x = e^xcos2x + 2∫e^xsin2xdx
= e^xcos2x + 2∫sin2xde^x = e^x(cos2x+2sin2x) - 4I1
解得 I1 = (1/5)e^x(cos2x+2sin2x)
I = (1/2)e^x - (1/10)e^x(cos2x+2sin2x) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询