什么是正比例函数
1个回答
展开全部
正比例函数概念如下:
一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。
形如y=kx(k是常数,k≠0)的图像是一条经过原点的直线,我们称它为直线y=kx。
反比例函数:
每一组对应值的乘积是一个不等于0的常数如果两个变量的每一组对应值的乘积是一个不等于0的常数,那么就说这两个变量成反比例。形如y=k/x(k为常数,k≠0,x≠0)的函数就叫做反比例函数。
变形公式为xy=k或y=kx^-1或y=k1/x。x是自变量,y是因变量,y是x的函数。反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴y=±x(即第一三,二四象限角平分线),对称中心是坐标原点。
从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣[1]。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询