-1的立方根
-1的立方根是-1。
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。这就是说,如果x^3=a,那么x叫做a的立方根。(注意:在平方根中的根指数2可省略不写,但三次方根中的根指数3不能省略,要写在根号的左上角。)
(1)正数的立方根是正数,负数的立方根是负数,0的立方根是0 [2] 。
(2)在实数范围内,任何实数的立方根只有一个。
(3)在实数范围内,负数不能开平方,但可以开立方。
(4)立方与开立方运算,互为逆运算。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(6)在复数范围内,负数既可以开平方,又可以开立方。
平方根介绍:
如果一个非负数x的平方等于a,即,,那么这个非负数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数(radicand)。求一个非负数a的平方根的运算叫做开平方。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。