外接球的表面积和体积
外接球的表面积公式:S=4/3*πR2。外接球的体积公式:V=4/3πr^3 。
外接球意指一个空间几何图形的外接球,对于旋转体和多面体,外接球有不同的定义,广义理解为球将几何体包围,且几何体的顶点和弧面在此球上。正多面体各顶点同在一球面上,这个球叫做正多面体的外接球。长方体一定有外接球,外接球的球心即其体对角线的交点,半径为体对角线的一半。
正方体既有内切球,也有外接球,球心都是体对角线的交点,内切球的半径为棱长的一半,外接球的半径为体对角线的一半。长方体外接球的直径等于长方体的体对角线长。正方体外接球的直径等于正方体的体对角线长。圆柱体外接球的直径等于圆柱体的体对角线长。
立体几何:
数学上,立体几何(solid geometry)一般作为平面几何的后续课程,是三维欧氏空间的几何的传统名称,因为实际上这大致就是人们生活的空间。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 锥台, 球, 棱柱, 楔, 瓶盖等等。
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2021-01-25 广告