1~100的质数

 我来答
v人格33
2023-02-03 · 超过198用户采纳过TA的回答
知道小有建树答主
回答量:589
采纳率:100%
帮助的人:8.3万
展开全部

1到100的质数有25个,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

质数数目计算:

尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。

1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

2、存在任意长度的素数等差数列。

3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。

4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。

5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)。

6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式