
三角形的面积怎么求?
4个回答
展开全部
AB:CE=BF:FC
6:(15-6)=BF:(6-BF)
6(6-BF)=9BF
36-6BF=9BF
15BF=36
BF=2.4厘米
所以三角形ABF的面积=1/2×6×2.4=7.2平方厘米
扩展资料:
正方形判定定理:
1、对角线互相垂直平分且相等的四边形是正方形。
2、邻边相等且有一个内角是直角的平行四边形是正方形。
3、有一组邻边相等的矩形是正方形 。
4、有一个内角是直角的菱形是正方形。
5、对角线相等的菱形是正方形。
6、对角线互相垂直的矩形是正方形。
7、有三个内角为直角且有一组邻边相等的四边形是正方形。
参考资料来源:百度百科—正方形判定定理
展开全部
三角形的面积计算公式为:三角形底乘以高除以2。1、已知三角形底为a,高为h,则S=ah/2。2、已知三角形两边为a,b,且两边夹角为C,则三角形面积为两边之积乘以夹角的正弦值,即S=(absinC)/2。3、设三角形三边分别为a,b,c,内切圆半径为r,则三角形面积S=(a+b+c)r/2。4、设三角形三边分别为a,b,c,外接圆半径为R,则三角形面积为abc/4R。5、在直角三角形ABC中(AB垂直于BC),三角形面积等于两直角边乘积的一半,即:S=AB×BC/2扩展资料:判定法一:1、锐角三角形:三角形的三个内角都小于90度。2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。3、钝角三角形:三角形的三个内角中有一个角大于90度。判定法二:1、锐角三角形:三角形的三个内角中最大角小于90度。2、直角三角形:三角形的三个内角中最大角等于90度。3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。其中锐角三角形和钝角三角形统称为斜三角形。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、三角形面积公式 S= (L1*L2*sinα)/2
2、sinα = (1-cosα^2)^1/2
3、向量a(x1, y1),b(x2, y2)夹角公式 cosα = ab/(L1*L2)
夹角余弦值=向量点乘 /(向量长度相乘)
4、sinα= (1-cosα^2)^1/2 = (1 - (ab/(L1*L2))^2 )^1/2 = ((L1*L2)^2 - (ab)^2)^1/2 / (L1L2) = ((x1^2+y1^2)(x2^2+y2^2) - (x1x2+y1y2)^2)^1/2 / (L1*L2) = (x1^2*y2^2+y2^2*x1^2-2x1y1x2y2)^1/2 / (L1*L2) = |(x1y2-x2y1)| / (L1*L2)
5、S = (L1*L2*sinα)/2 = |(x1y2-x2y1)|/2
6、上式中 x1 x2 y1 y2 都是向量分量值,是建立在 三角形其中一个顶点已经移到了原点(0,0)的基础上的。对于更一般的形式
三角形三个顶点A(x1, y1),B(x2, y2),C(x3, y3)
向量a(x1-x3, y1-y3),b(x2-x3, y2-y3)
代回到5中的式子,S = |(x1-x3)*(y2-y3)-(x2-x3)*(y1-y3)|/2
但是个人觉得记住这个复杂的式子没有意义,还是理解并记住向量形式的表示,也就是5中的式子就可以了
实际上我们来看平面坐标系里的两个向量
a(x1, y1),b(x2, y2)
列成矩阵形式
|x1 y1|
|x2 y2|
这个 2*2 矩阵的行列式的绝对值就是 |x1y2-x2y1|,这就是以 a,b 为两条边的平行四边形的面积,自然以 a,b 为两条边的三角形面积就是 |(x1y2-x2y1)|/2 了
更多地,我们来看三维空间坐标系里的三个向量
a(x1, y1, z1),b(x2, y2, z2),c(x3, y3, z3)
列成矩阵形式
|x1 y1 z1|
|x2 y2 z2|
|x3 y3 z3|
这个 3*3 矩阵的行列式的绝对值就是 |x1y2z3+x2y3z1+x3y1z2-z1y2x3-z2y3x1-z3y1x2|,这就是以 a,b,c 为边的平行六面体(盒子)的体积
所以求空间中(更高维空间也可以)的“盒子”体积的方法就是求矩阵的行列式的绝对值(当然,“盒子”得是在高维空间中满维度的,例如二维空间中必须是个平行四边形,不能是直线;三维空间中必须是个平行六面体,不能是二维平面)
反过来看二维空间三角形面积求法,是可以通过矩阵行列式轻松求得的,比起用三角函数会简单很多。
2、sinα = (1-cosα^2)^1/2
3、向量a(x1, y1),b(x2, y2)夹角公式 cosα = ab/(L1*L2)
夹角余弦值=向量点乘 /(向量长度相乘)
4、sinα= (1-cosα^2)^1/2 = (1 - (ab/(L1*L2))^2 )^1/2 = ((L1*L2)^2 - (ab)^2)^1/2 / (L1L2) = ((x1^2+y1^2)(x2^2+y2^2) - (x1x2+y1y2)^2)^1/2 / (L1*L2) = (x1^2*y2^2+y2^2*x1^2-2x1y1x2y2)^1/2 / (L1*L2) = |(x1y2-x2y1)| / (L1*L2)
5、S = (L1*L2*sinα)/2 = |(x1y2-x2y1)|/2
6、上式中 x1 x2 y1 y2 都是向量分量值,是建立在 三角形其中一个顶点已经移到了原点(0,0)的基础上的。对于更一般的形式
三角形三个顶点A(x1, y1),B(x2, y2),C(x3, y3)
向量a(x1-x3, y1-y3),b(x2-x3, y2-y3)
代回到5中的式子,S = |(x1-x3)*(y2-y3)-(x2-x3)*(y1-y3)|/2
但是个人觉得记住这个复杂的式子没有意义,还是理解并记住向量形式的表示,也就是5中的式子就可以了
实际上我们来看平面坐标系里的两个向量
a(x1, y1),b(x2, y2)
列成矩阵形式
|x1 y1|
|x2 y2|
这个 2*2 矩阵的行列式的绝对值就是 |x1y2-x2y1|,这就是以 a,b 为两条边的平行四边形的面积,自然以 a,b 为两条边的三角形面积就是 |(x1y2-x2y1)|/2 了
更多地,我们来看三维空间坐标系里的三个向量
a(x1, y1, z1),b(x2, y2, z2),c(x3, y3, z3)
列成矩阵形式
|x1 y1 z1|
|x2 y2 z2|
|x3 y3 z3|
这个 3*3 矩阵的行列式的绝对值就是 |x1y2z3+x2y3z1+x3y1z2-z1y2x3-z2y3x1-z3y1x2|,这就是以 a,b,c 为边的平行六面体(盒子)的体积
所以求空间中(更高维空间也可以)的“盒子”体积的方法就是求矩阵的行列式的绝对值(当然,“盒子”得是在高维空间中满维度的,例如二维空间中必须是个平行四边形,不能是直线;三维空间中必须是个平行六面体,不能是二维平面)
反过来看二维空间三角形面积求法,是可以通过矩阵行列式轻松求得的,比起用三角函数会简单很多。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、S=1/2×aha是三角形的底,h是底所对应的高。三角形的底a为6cm,高h为3cm,则面积S=(1/2)ah=9(平方厘米)。2、S=1/2*absinC =1/2*bcsinA=1/2*acsinB 其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。参见三角函数。扩展资料:常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。三角形的稳定性使其不像四边形那样易于变形,有着稳定、坚固、耐压的特点。三角形的结构在工程上有着广泛的应用。许多建筑都是三角形的结构,如:埃菲尔铁塔,埃及金字塔等等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询