在△ABC中AB=BC,将△ABC绕点A沿顺时针旋转得到△AB1C1,使点C1落在直线BC上(点C1与点C不重合)
(1)如图(1),当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°...
(1)如图(1),当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;
(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);
(3)当∠C<60°时,请你在图(2)中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否成立?并说明理由. 展开
(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);
(3)当∠C<60°时,请你在图(2)中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否成立?并说明理由. 展开
1个回答
展开全部
(1)答:AB1//CB
∵AC1=AC
∴∠C=∠C1
∴∠CAC1=∠ABC
∴∠B1AC=∠B1AC1+∠C1AC=∠BAC+∠C1AC
=∠ABC+∠BAC
∴∠B1AC+∠ACB=∠ABC+∠BAC+∠ACB=180°
∴AB1//CB
(2)答:AB1//CB
(3)答:成立。
作法:截出AC,并作AC1使C1在CB延长线CC1上
作C1C2使C1C2=BC且C2在CC1上
作C2D⊥AC1,延长C2D至E使DE=C2D
连接C1D,AD,则AC1D为所求三角形
证明如下
∵AC=AC1
∴∠C1AC=∠ABC
∴∠B1AC=∠ABC+∠BAC
∴∠B1AC+∠ACB=∠ABC+∠BAC+∠ACB=180°
∵AC1=AC
∴∠C=∠C1
∴∠CAC1=∠ABC
∴∠B1AC=∠B1AC1+∠C1AC=∠BAC+∠C1AC
=∠ABC+∠BAC
∴∠B1AC+∠ACB=∠ABC+∠BAC+∠ACB=180°
∴AB1//CB
(2)答:AB1//CB
(3)答:成立。
作法:截出AC,并作AC1使C1在CB延长线CC1上
作C1C2使C1C2=BC且C2在CC1上
作C2D⊥AC1,延长C2D至E使DE=C2D
连接C1D,AD,则AC1D为所求三角形
证明如下
∵AC=AC1
∴∠C1AC=∠ABC
∴∠B1AC=∠ABC+∠BAC
∴∠B1AC+∠ACB=∠ABC+∠BAC+∠ACB=180°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询