如何理解非齐次线性微分方程的通解是齐次方程的解

 我来答
Ch陈先生
高粉答主

2023-04-19 · 互联网新手写文章老手
Ch陈先生
采纳数:332 获赞数:140958

向TA提问 私信TA
展开全部
非齐次线性微分方程。
即y'+f(x)y=g(x)。
两个特解y1,y2。
即y1'+f(x)y1=g(x),y2'+f(x)y2=g(x)。
二者相减得到。
(y1-y2)'+f(x)*(y1-y2)=0。
所以y1-y2当然是齐次方程。
y'+f(x)*y=0的解。
这是一类具有非齐次项的线性微分方程,其中一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。

研究非齐次线性微分方程其实就是研究其解的问题,它的通解是由其对应的齐次方程的通解加上其一个特解组成。
齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式