
可导与连续关系
可导与连续关系介绍如下:
函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
关于函数的可导导数和连续的关系:
1、连续的函数不一定可导。
2、可导的函数是连续的函数。
3、越是高阶可导函数曲线越是光滑。
4、存在处处连续但处处不可导的函数。
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。
扩展资料
单侧连续的几何意义:
通俗地说,函数在点x0左连续,该点x0对应函数曲线上的点M(x0,f(x0)),同时点M与左边紧邻的函数曲线天衣无缝地连在一起,没有任何间隔。同理,理解右连续。
如函数y=x在区间[-1,1]在点x=-1右连续,在x=1左连续。
又如函数y=|x|/x在x=0处即不左连续也不右连续。
有关定义:
1. 可导:是一个数学词汇,定义是设y=f(x)是一个单变量函数, 如果y在x=x_0处存在导数y'=f'(x),则称y在x=x_0处可导。
2. 连续:设函数y=f(x)在点x0的某个邻域内有定义。如果当自变量Δx趋向于0时。相应的函数改变量Δy也趋向于0, 则称函数y=f(x)在点x0处连续。
若只考虑实变函数,那么要是对于一定区间上的任意一点,函数本身有定义,且其左极限与右极限均存在且相等,则称函数在这一区间上是连续的。
连续分为左连续和右连续。在区间每一点都连续的函数,叫做函数在该区间的连续函数。