为什么函数f(- x)= f(x)?
展开全部
一个函数既是奇函数又是偶函数时,意味着该函数满足以下两个性质:
1. 奇函数的性质:对于任意实数 x,有 f(-x) = -f(x)。即函数关于原点对称,对称轴是 y 轴。
2. 偶函数的性质:对于任意实数 x,有 f(-x) = f(x)。即函数关于 y 轴对称。
一个函数同时满足奇函数和偶函数的性质,必须满足以下条件:
f(-x) = -f(x) 且 f(-x) = f(x)
这意味着函数在关于原点的对称轴和关于 y 轴的对称轴上具有对称性。
只有一个函数同时满足奇函数和偶函数的性质,那就是恒等于零的函数:
f(x) = 0
因为对于任意实数 x,有 f(-x) = 0 = -f(x) 和 f(-x) = 0 = f(x)。
其他非零函数不可能同时满足奇函数和偶函数的性质,因为奇函数和偶函数在原点的函数值必须是相反数,而非零函数不可能在所有实数点处的函数值都是零。因此,恒等于零的函数是唯一同时是奇函数和偶函数的函数。
1. 奇函数的性质:对于任意实数 x,有 f(-x) = -f(x)。即函数关于原点对称,对称轴是 y 轴。
2. 偶函数的性质:对于任意实数 x,有 f(-x) = f(x)。即函数关于 y 轴对称。
一个函数同时满足奇函数和偶函数的性质,必须满足以下条件:
f(-x) = -f(x) 且 f(-x) = f(x)
这意味着函数在关于原点的对称轴和关于 y 轴的对称轴上具有对称性。
只有一个函数同时满足奇函数和偶函数的性质,那就是恒等于零的函数:
f(x) = 0
因为对于任意实数 x,有 f(-x) = 0 = -f(x) 和 f(-x) = 0 = f(x)。
其他非零函数不可能同时满足奇函数和偶函数的性质,因为奇函数和偶函数在原点的函数值必须是相反数,而非零函数不可能在所有实数点处的函数值都是零。因此,恒等于零的函数是唯一同时是奇函数和偶函数的函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询