已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N。〈1〉令bn=an+1-an,证明:{bn}是等比数列: 求{an...
已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N。〈1〉令bn=an+1-an,证明:{bn}是等比数列:求{an}的通项公式...
已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N。〈1〉令bn=an+1-an,证明:{bn}是等比数列:
求{an}的通项公式 展开
求{an}的通项公式 展开
展开全部
由a(n+2)=[an+a(n+1)]/2
a(n+2)-a(n+1)=[an-a(n+1)]/2
化b(n+1)=-1/2*bn(因bn=a(n+1)-an)
{bn}是等比数列,b1=1,公比-1/2,
bn=(-1/2)^(n-1)
an-a(n-1)=(-1/2)^(n-2)
……
a2-a1=1
n-1个式子累加an=[5+4(-1/2)^n]/3
a(n+2)-a(n+1)=[an-a(n+1)]/2
化b(n+1)=-1/2*bn(因bn=a(n+1)-an)
{bn}是等比数列,b1=1,公比-1/2,
bn=(-1/2)^(n-1)
an-a(n-1)=(-1/2)^(n-2)
……
a2-a1=1
n-1个式子累加an=[5+4(-1/2)^n]/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2a[n+2]=an+a[n+1]同时-2a[n+1]
2(a[n+2]-a[n+1])=an-a[n+1]=-(a[n+1]-an)
2b[n+1]=-bn
b[n+1]/bn=-1/2 b1=1
bn=(-1/2)^(n-1)
an-a[n-1]=(-1/2)^(n-2)
..a2-a1=1
n-1个式子相加
an=[5+3(1/2)^(n-1)]/2
2(a[n+2]-a[n+1])=an-a[n+1]=-(a[n+1]-an)
2b[n+1]=-bn
b[n+1]/bn=-1/2 b1=1
bn=(-1/2)^(n-1)
an-a[n-1]=(-1/2)^(n-2)
..a2-a1=1
n-1个式子相加
an=[5+3(1/2)^(n-1)]/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询