意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…, 其中从

再分别依次从左到右取2个、3个、4个、5个,正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如下表所示:序号①②③④周长6101626若按此规律继续作矩形,则序号为... 再分别依次从左到右取2个、3个、4个、5个,正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如下表所示:序号①②③④周长 6 10 16 26

若按此规律继续作矩形,则序号为8的矩形周长是_______。
展开
君卿陌离
2013-01-16 · TA获得超过407个赞
知道答主
回答量:47
采纳率:0%
帮助的人:16.6万
展开全部
意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和、现以这组数中的各个数作为正方形的边长值构造如下正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、…相应长方形的周长如下表所示:
序号 ① ② ③ ④ …
周长 6 10 x y …
仔细观察图形,上表中的x=
16
,y=
26

若按此规律继续作长方形,则序号为⑧的长方形周长是
178
这个数列早在12世纪就被人发现了,当时只是用递推公式表示的,就是后一项等于前两项的和,而它的通项公式直到18世纪才有人给出:
第N个数aN=(1/√5)*{[(1+√5)/2]^N-[(1-√5)/2]^N}
式子虽然有点烦,但是正确的,不信可以代进去试试。
至于解法,用现在的眼光来看有很多,差分方程,矩阵对角化……
楼主要具体解法可以再讨论。
百度网友76def05
2010-10-31 · TA获得超过115个赞
知道答主
回答量:11
采纳率:0%
帮助的人:0
展开全部
这个数列早在12世纪就被人发现了,当时只是用递推公式表示的,就是后一项等于前两项的和,而它的通项公式直到18世纪才有人给出:
第N个数aN=(1/√5)*{[(1+√5)/2]^N-[(1-√5)/2]^N}
式子虽然有点烦,但是正确的,不信可以代进去试试。
至于解法,用现在的眼光来看有很多,差分方程,矩阵对角化……
楼主要具体解法可以再讨论。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
怑顆醣
2013-01-17
知道答主
回答量:3
采纳率:0%
帮助的人:4402
展开全部
这个数列早在12世纪就被人发现了,当时只是用递推公式表示的,就是后一项等于前两项的和,而它的通项公式直到18世纪才有人给出:
第N个数aN=(1/√5)*{[(1+√5)/2]^N-[(1-√5)/2]^N}
式子虽然有点烦,但是正确的,不信可以代进去试试。
至于解法,用现在的眼光来看有很多,差分方程,矩阵对角化……

参考资料: 楼主可以自己在草稿纸上算一算,或许会明白的

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2010-11-10
展开全部
178
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式