已知数列{an}满足a1=33,an+1-an=2n 则求an/n的最小值

左右鱼耳
2010-10-28 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2595
采纳率:0%
帮助的人:4959万
展开全部
解:
a(n+1)-an=2n
an-a(n-1)=2(n-1)-----------(1)
a(n-1)-a(n-2)=2(n-2)-------(2)
……………………
a2-a1=2×1-------------- (n-1)
(1)+(2)+...+(n-1)得 an-a1=2×[1+...+(n-2)+(n-1)]=2×[1+(n-1)](n-1)/2=n(n-1)
∴an=a1+n(n-1)=n²-n+33
an/n=n-1-33/n=n+33/n-1≥2√33-1
所以:n=33/n
所以:n=√33
n=5或者n=6
a5/5=5+33/5-1=10.6, a6/6=6+33/6-1=10.5<10.6
∴an/n的最小值在n=6处取得,为10.5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式