已知函数f(x)=ax^3+bx^2+4x的极小值为-8,其到函数y=f'(x)的图像经过点(-2,0) 求f(x)的解析式

似南霜00V
2012-04-22
知道答主
回答量:8
采纳率:0%
帮助的人:3.9万
展开全部
求导函数 f'(x)=3ax^2+2bx+4
在x=-2处有极值 则f'(-2)=12a+4b+4=0
极值是-8 则 原函数 f(-2)=-8a+4b-8=-8 联立解方程就行了
百度网友9a1405f
2010-10-30 · TA获得超过345个赞
知道小有建树答主
回答量:114
采纳率:0%
帮助的人:115万
展开全部
由原函数和图可以知道导函数是一个一元二次函数
这样 我们设导函数的对称轴是x=c
这样 导函数与x轴的另一个交点就可以表示出来(2c+2,0)
由图可以知道极小值在x=c处取得 就可以列一个方程
在把函数的导函数求出 根据其与x轴的两个交点 就可以列两个方程
三个方程解三个未知数 正好合适
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式