已知x>0,y.>0,且x+y=1,求下列最小值,(1)x^2+y^2 (2)1/x^2+1/y^2 (3)2/x+3/y (4) (x+1/x)*(y+1/y) (
已知x>0,y.>0,且x+y=1,求下列最小值,(1)x^2+y^2(2)1/x^2+1/y^2(3)2/x+3/y(4)(x+1/x)*(y+1/y)(5)(x+1/...
已知x>0,y.>0,且x+y=1,求下列最小值,(1)x^2+y^2 (2)1/x^2+1/y^2 (3)2/x+3/y
(4) (x+1/x)*(y+1/y) (5)(x+1/x)^2+(y+1/y)^2 (6)(x+2)^2+(y+2)^ (7) (y+2)/(x+2) 展开
(4) (x+1/x)*(y+1/y) (5)(x+1/x)^2+(y+1/y)^2 (6)(x+2)^2+(y+2)^ (7) (y+2)/(x+2) 展开
4个回答
展开全部
解:已知x>0,y.>0,且x+y=1
(1)x^2+y^2≥2xy
2(x^2+y^2)≥(x+y)^2=1
x^2+y^2≥1/2
(2)1/x^2+1/y^2=(x+y)^2/x^2+(x+y)^2/y^2
=2+y^2/x^2+x^2/y^2+2y/x+2x/y
≥2+2√[(y^2/x^2)*(x^2/y^2)]+2√[(2y/x)*(2x/y)]
=2+2+2*2
=8
(3)2/x+3/y=(2x+2y)/x+(3x+3y)/y=2+2y/x+3x/y+3
=5+2y/x+3x/y
≥5+2√[(2y/x)*(3x/y)]
=5+2√6
(4)(x+1/x)*(y+1/y)=xy+x/y+y/x+1/xy
= xy + 1/(xy) + (x^2+y^2)/(xy)
= xy + 1/(xy) + (x^2+2xy+y^2)/(xy) -2
= xy + 1/(xy) + (x+y)^2/(xy) -2
= xy + 2/(xy) -2
求 f(z) = z + 2/z 的最小值,其中z=xy<=1/4
由于f(z)在(0,1/4]区间是单调递减函数(可以证明f(z)在(0,sqrt(2)]区间是单调递减函数,而1/4<sqrt(2),所以在(0,1/4]区间是单调递减函数),因此f(z)在(0,1/4]区间的最小值是f(1/4)=1/4+2/(1/4)=8+1/4
所以(x+1/x)*(y+1/y)的最小值=8+1/4-2=6+1/4=25/4
(5)(x+1/x)^2+(y+1/y)^2≥2(x+1/x)*(y+1/y)≥25/2
(6)(x+2)^2+(y+2)^2=x^2+4x+4+y^2+4y+4
=x^2+y^2+12≥1/2+12=25/2
(7)(y+2)/(x+2)=(1-x+2)/(x+2)=(3-x)/(x+2)=-1+5/(x+2)
0<x<1 2<x+2<3
所以5/3<5/(x+2)<5/2
所以2/3<(y+2)/(x+2)<3/2
所以(y+2)/(x+2)无最小值,因为它不能取到2/3
太多了,也不知道有没有做错的
(1)x^2+y^2≥2xy
2(x^2+y^2)≥(x+y)^2=1
x^2+y^2≥1/2
(2)1/x^2+1/y^2=(x+y)^2/x^2+(x+y)^2/y^2
=2+y^2/x^2+x^2/y^2+2y/x+2x/y
≥2+2√[(y^2/x^2)*(x^2/y^2)]+2√[(2y/x)*(2x/y)]
=2+2+2*2
=8
(3)2/x+3/y=(2x+2y)/x+(3x+3y)/y=2+2y/x+3x/y+3
=5+2y/x+3x/y
≥5+2√[(2y/x)*(3x/y)]
=5+2√6
(4)(x+1/x)*(y+1/y)=xy+x/y+y/x+1/xy
= xy + 1/(xy) + (x^2+y^2)/(xy)
= xy + 1/(xy) + (x^2+2xy+y^2)/(xy) -2
= xy + 1/(xy) + (x+y)^2/(xy) -2
= xy + 2/(xy) -2
求 f(z) = z + 2/z 的最小值,其中z=xy<=1/4
由于f(z)在(0,1/4]区间是单调递减函数(可以证明f(z)在(0,sqrt(2)]区间是单调递减函数,而1/4<sqrt(2),所以在(0,1/4]区间是单调递减函数),因此f(z)在(0,1/4]区间的最小值是f(1/4)=1/4+2/(1/4)=8+1/4
所以(x+1/x)*(y+1/y)的最小值=8+1/4-2=6+1/4=25/4
(5)(x+1/x)^2+(y+1/y)^2≥2(x+1/x)*(y+1/y)≥25/2
(6)(x+2)^2+(y+2)^2=x^2+4x+4+y^2+4y+4
=x^2+y^2+12≥1/2+12=25/2
(7)(y+2)/(x+2)=(1-x+2)/(x+2)=(3-x)/(x+2)=-1+5/(x+2)
0<x<1 2<x+2<3
所以5/3<5/(x+2)<5/2
所以2/3<(y+2)/(x+2)<3/2
所以(y+2)/(x+2)无最小值,因为它不能取到2/3
太多了,也不知道有没有做错的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询