1个回答
展开全部
由落体运动的内容在高考中常常以选择题、填空题形式出现,在计算题中一般是考查与其他知识的综合应用. 要学好本节知识就得准确把握自由落体运动的概念、条件和性质,能灵活应用所学规律,做到能一题多解,开阔思路.
一、如何理解自由落体运动
1. 自由落体运动特点:初速度v0=0,加速度a=g竖直向下的匀加速直线运动.
2. 自由落体运动的规律:初速度为零的匀加速直线运动的规律就是自由落体运动的规律,且a=g. 一般计算中取g=9.8m/s2,粗略计算中也可取 .
(1)三个基本公式:
(2)三个特殊公式:
①在连续相等的时间(T)内位移之差为一恒定值,即 ;
②某段时间内中间时刻的瞬时速度
;
③某段位移中间位置的瞬时速度
二、如何应用自由落体运动规律
例、一矿井深为125m,在井口每隔一定时间自由下落一个小球,当第11个小球刚从井口开始下落时,第一个小球恰好到达井底,则
(1)相邻小球开始下落的时间间隔是多少?
(2)此时第3个小球和第5个小球相距多远?( )
解析:(1)设相邻小球下落的时间间隔为T,则第1个小球从井口落至井底的时间为t=10T,由题意知:
;
所以
(2)计算小球间距,大致有六种方法
解法一:(用自由落体位移公式求解)
由第3个小球下落时间t3=8T、第5个小球下落时间t5=6T,根据自由落体运动公式直接得间距:
解法二:(用平均速度求解)
由第4个小球下落时间t4=7T得第4个小球的瞬时速度:
因为做匀变速直线运动的物体在某段时间内的平均速度等于其中间时刻的瞬时速度,所以第3个至第5个小球在这段时间内的平均速度为 ;
这段时间内两球相距
解法三:(用位移推论公式求解)
由第3个小球下落时间t3=8T,第5个小球下落时间t5=6T,得此时两球的瞬时速度分别为: 和 ;
根据匀加速直线运动的公式 得:
解法四:(用匀变速位移公式求解)
由第5个小球下落时间t5=6T,得此时小球的瞬时速度为 ;
根据匀加速直线运动的公式得: ;
得:
解法五:(用匀变速推论公式求解)
据匀变速直线运动规律的推论: ,从第11个小球下落开始计时,经T、2T、3T……10T后它将依次达到第10个、第9个……第2个、第1个小球的位置,各个位置之间的位移之比为1:3:5:……:17:19,所以这时第3个小球和第5个小球相距
解法六:(利用v-t图象求解)
由于第3个小球下落时间8T时瞬时速度为
;
第5个小球下落时间6T时瞬时速度为:
;
可以认为是一个小球分别下落8T和6T时的瞬时速度,描绘v-t图象如图所示,故阴影面积就等于6T到8T时间内的位移
小结:求解自由落体运动的题目,一般都可以从不同角度,运用多种方法求解. 这样,不仅可使同学们对运动学公式及推论进行全面的应用,以加深对运动学公式的理解;而且更重要的是培养同学们分析问题的灵活性和解题思维的发散性.
一、如何理解自由落体运动
1. 自由落体运动特点:初速度v0=0,加速度a=g竖直向下的匀加速直线运动.
2. 自由落体运动的规律:初速度为零的匀加速直线运动的规律就是自由落体运动的规律,且a=g. 一般计算中取g=9.8m/s2,粗略计算中也可取 .
(1)三个基本公式:
(2)三个特殊公式:
①在连续相等的时间(T)内位移之差为一恒定值,即 ;
②某段时间内中间时刻的瞬时速度
;
③某段位移中间位置的瞬时速度
二、如何应用自由落体运动规律
例、一矿井深为125m,在井口每隔一定时间自由下落一个小球,当第11个小球刚从井口开始下落时,第一个小球恰好到达井底,则
(1)相邻小球开始下落的时间间隔是多少?
(2)此时第3个小球和第5个小球相距多远?( )
解析:(1)设相邻小球下落的时间间隔为T,则第1个小球从井口落至井底的时间为t=10T,由题意知:
;
所以
(2)计算小球间距,大致有六种方法
解法一:(用自由落体位移公式求解)
由第3个小球下落时间t3=8T、第5个小球下落时间t5=6T,根据自由落体运动公式直接得间距:
解法二:(用平均速度求解)
由第4个小球下落时间t4=7T得第4个小球的瞬时速度:
因为做匀变速直线运动的物体在某段时间内的平均速度等于其中间时刻的瞬时速度,所以第3个至第5个小球在这段时间内的平均速度为 ;
这段时间内两球相距
解法三:(用位移推论公式求解)
由第3个小球下落时间t3=8T,第5个小球下落时间t5=6T,得此时两球的瞬时速度分别为: 和 ;
根据匀加速直线运动的公式 得:
解法四:(用匀变速位移公式求解)
由第5个小球下落时间t5=6T,得此时小球的瞬时速度为 ;
根据匀加速直线运动的公式得: ;
得:
解法五:(用匀变速推论公式求解)
据匀变速直线运动规律的推论: ,从第11个小球下落开始计时,经T、2T、3T……10T后它将依次达到第10个、第9个……第2个、第1个小球的位置,各个位置之间的位移之比为1:3:5:……:17:19,所以这时第3个小球和第5个小球相距
解法六:(利用v-t图象求解)
由于第3个小球下落时间8T时瞬时速度为
;
第5个小球下落时间6T时瞬时速度为:
;
可以认为是一个小球分别下落8T和6T时的瞬时速度,描绘v-t图象如图所示,故阴影面积就等于6T到8T时间内的位移
小结:求解自由落体运动的题目,一般都可以从不同角度,运用多种方法求解. 这样,不仅可使同学们对运动学公式及推论进行全面的应用,以加深对运动学公式的理解;而且更重要的是培养同学们分析问题的灵活性和解题思维的发散性.
华芯测试
2024-09-01 广告
2024-09-01 广告
电学测试台是深圳市华芯测试科技有限公司的核心设备之一,它集成了高精度测量仪器与自动化控制系统,专为半导体芯片、电子元件及模块的电性能检测而设计。该测试台能够迅速、准确地完成电压、电流、电阻、电容及频率等关键参数的测试,确保产品质量符合行业标...
点击进入详情页
本回答由华芯测试提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询