求助一道初二几何题

在△ABC中,AB=AC,点D是直线BC上一点,(不与B,C重合)以AD为一边的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.1当点D在BC上,如果∠BAC... 在△ABC中,AB=AC,点D是直线BC上一点,(不与B,C重合)以AD为一边的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
1 当点D在BC上,如果∠BAC=90°,则∠BCE=?
2 设∠BAC=α,∠BCE=β,当点D在线段BC上移动,则α β之间有什么数量关系?是说明理由。
展开
nancynhh
2010-10-31 · TA获得超过340个赞
知道小有建树答主
回答量:111
采纳率:0%
帮助的人:146万
展开全部
解: ∵AB=AC, AD=AE ,∠BAD=∠BAC-∠DAC=∠DAE-∠DAC=∠CAE
∴ △ADB≌△AEC ∴∠ACE=∠ABD=∠ABC
∴∠BCE=∠BCA+∠ACE=∠BCA+∠ABC=180°-∠BAC
∴ β+α =180°,
1.) 如果∠BAC=90°,则∠BCE=90°
2 设∠BAC=α,∠BCE=β,当点D在线段BC上移动,
α+ β=180°, 即A,D.C,E四点共圆.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式