北师大八年级数学上册其中测试题答案
展开全部
20、由于其他因素影响,4月初猪肉下调,下调后每斤猪肉价格是原价的2/3,原来用60元买的猪肉下调后可多买两斤。4月中旬,猪肉价格开始回升,经过2个月,猪肉价格上调为每斤14.4元,
(1)求四月初价格下调后每斤多少钱?
(2)求5,6月份猪肉价格的月平均增长率
解:(1)设4月初猪肉价格为a元
60/x+2=60/(2/3x)
60/x+2=90/x
30/x=2
x=15元
(2)设平均增长率为b
15×2/3×(1+b)²=14.4
(1+b)²=1.44
1+b=1.2或1+b=-1.2
b=0.2或-2.2(舍去)
平均增长率为20%
21、红星小学九月份用点480千瓦时,十月份比九月份多了九分之一,十月份用电多少千瓦时?
设十月份用电a千瓦时
(a-480)/480=1/9
9a-480*9=480
9a=10*480
a=1600/3千瓦时
22、要为一副长29cm,宽22cm的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的镜框边的四分之一,镜框边的宽度应是多少厘米?
解:设宽为a厘米
根据题意
(29+2a)×a×2+22×a×2=1/4×29×22
4a²+58a+44a=319/2
8a²+204a-319=0
a=(-51±√3239)/4
a=(-51-√3239)/4(舍去)
所以
a=(-51+√3239)/4≈1.48厘米
23、某农户种植花生, 原来种植的花生亩产量为200千克. 出油率为50% .( 即每100千克花生可加工成花生油50千克.) . 现在种植新品种花生后, 每亩收获的花生可加工成花生油132千克. 其中花生出油率的增长率是亩产量的增长率的2分之一. 求新品种花生亩产量的增长率。
解:设新品种花生亩产量的增长率是a
那么出油率是1/2a
200×(1+a)×50%×(1+1/2a)=132
(a+1)(a+2)=132/50
a²+3a+2-2.64=0
a²+3a-0.64=0
化简
25a²+75a-16=0
a=(-75±85)/50
a=-3.2(舍去)或a=0.2=20%
所以新品种花生亩产量的增长率是20%
24、将进价为40元的商品加价25%出售能卖出500个,若以后每涨1元,其销售就减少10个,如要使利润为8000元,且商家与顾客双盈,那么售价应定为多少?这是应进货多少个?
解:售价=40×(1+25%)=50元
成本为40×500=20000元
设涨价a元,则少卖出10a个
根据题意
(50+a)×(500-10a)-40×(500-10a)=8000
25000-500a+500a-10a²-20000+400a=8000
10a²-400a+3000=0
a²-40a+300=0
(a-10)(a-30)=0
a=10或a=30
当涨价为10元或30元时利润为8000元,但是为了双赢,那么涨价应该在10元
此时进货500-10×10=400个
1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。问:甲乙两队原计划各修多少千米?
解:设甲乙原来的速度每天各修a千米,b千米
根据题意
(a+b)×50=200(1)
10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)
化简
a+b=4(3)
a+0.6+4a+3b+b+0.4=20
5a+4b=19(4)
(4)-(3)×4
a=19-4×4=3千米
b=4-3=1千米
甲每天修3千米,乙每天修1千米
甲原计划修3×50=150千米
乙原计划修1×50=50千米
2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元。求自动笔的单价,和钢笔的单价。
解:设自动铅笔X元一支 钢笔Y元一支
4X+2Y=14
X+2Y=11
解得X=1
Y=5
则自动铅笔单价1元
钢笔单价5元
3、据统计2009年某地区建筑商出售商品房后的利润率为25%。
(1)2009年该地区一套总售价为60万元的商品房,成本是多少?
(2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。
解:(1)成本=60/(1+25%)=48万元
(2)设2010年60万元购买b平方米
2010年的商品房成本=60/(1+1/3)=45万
60/b-2a=60/(b+20)(1)
45/b-a=48/(b+20)(2)
(2)×2-(1)
30/b=36/(b+20)
5b+100=6b
b=100平方米
2010年每平方米的房价=600000/100=6000元
利润=6000-6000/(1+1/3)=1500元
4、某商店电器柜第一季度按原定价(成本+利润)出售A种电器若干件,平均每件获得百分之25的利润。第二季度因利润略有调高,卖出A种电器的件数只有第一季度卖出A种电器的6分之5,但获得的总利润却与第一季度相同。
(1)求这个柜台第二季度卖出A种电器平均每件获利润百分之几?
(2)该柜台第三季度按第一季度定价的百分之90出售A种电器,结果卖出的件数比第一季度增加了1.5倍,求第三季度出售的A种电器的利润比第一季度出售的A种电器的总利润增加百分之几?
解:(1)设成本为a,卖出件数为b,第二季度利润率为c
那么利润=a×25%=1/4a
第二季度卖出电器5/6b件
第一季度的总利润=1/4ab
第二季度利润=ac×5/6b=5/6abc
根据题意
1/4ab=5/6abc
c=1/4×6/5
c=3/10=30%
(2)第一季度定价=a(1+25%)=5/4a
第三季度定价=5/4a×90%=9/8a
第三季度卖出(1.5+1)b=2.5b件
第三季度的总利润=9/8a×2.5b-2.5ab=5/16ab
第三季度比第一季度总利润增加(5/16ab-1/4ab)/(1/4ab)=(1/16)/(1/4)=0.25=25%
5、将若干只鸡放入若干个笼中。若每个笼中放4只,则有一只鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,那么,鸡、笼各多少?
设鸡有x只,笼有y个
4y+1=x
5(y-1)=x
得到x=25,y=6
6、用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y
x+y=36 (1)
2*16x=40y (2)
由(1)得36-y=x (3)
将(3)代入(2)得;
32(36-y)=40y
y=16
又y=16代入(1)得:x=20
所以;x=20
y=16
答:用20张制盒身,用16制盒底.
仅供参考
(1)求四月初价格下调后每斤多少钱?
(2)求5,6月份猪肉价格的月平均增长率
解:(1)设4月初猪肉价格为a元
60/x+2=60/(2/3x)
60/x+2=90/x
30/x=2
x=15元
(2)设平均增长率为b
15×2/3×(1+b)²=14.4
(1+b)²=1.44
1+b=1.2或1+b=-1.2
b=0.2或-2.2(舍去)
平均增长率为20%
21、红星小学九月份用点480千瓦时,十月份比九月份多了九分之一,十月份用电多少千瓦时?
设十月份用电a千瓦时
(a-480)/480=1/9
9a-480*9=480
9a=10*480
a=1600/3千瓦时
22、要为一副长29cm,宽22cm的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的镜框边的四分之一,镜框边的宽度应是多少厘米?
解:设宽为a厘米
根据题意
(29+2a)×a×2+22×a×2=1/4×29×22
4a²+58a+44a=319/2
8a²+204a-319=0
a=(-51±√3239)/4
a=(-51-√3239)/4(舍去)
所以
a=(-51+√3239)/4≈1.48厘米
23、某农户种植花生, 原来种植的花生亩产量为200千克. 出油率为50% .( 即每100千克花生可加工成花生油50千克.) . 现在种植新品种花生后, 每亩收获的花生可加工成花生油132千克. 其中花生出油率的增长率是亩产量的增长率的2分之一. 求新品种花生亩产量的增长率。
解:设新品种花生亩产量的增长率是a
那么出油率是1/2a
200×(1+a)×50%×(1+1/2a)=132
(a+1)(a+2)=132/50
a²+3a+2-2.64=0
a²+3a-0.64=0
化简
25a²+75a-16=0
a=(-75±85)/50
a=-3.2(舍去)或a=0.2=20%
所以新品种花生亩产量的增长率是20%
24、将进价为40元的商品加价25%出售能卖出500个,若以后每涨1元,其销售就减少10个,如要使利润为8000元,且商家与顾客双盈,那么售价应定为多少?这是应进货多少个?
解:售价=40×(1+25%)=50元
成本为40×500=20000元
设涨价a元,则少卖出10a个
根据题意
(50+a)×(500-10a)-40×(500-10a)=8000
25000-500a+500a-10a²-20000+400a=8000
10a²-400a+3000=0
a²-40a+300=0
(a-10)(a-30)=0
a=10或a=30
当涨价为10元或30元时利润为8000元,但是为了双赢,那么涨价应该在10元
此时进货500-10×10=400个
1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。问:甲乙两队原计划各修多少千米?
解:设甲乙原来的速度每天各修a千米,b千米
根据题意
(a+b)×50=200(1)
10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)
化简
a+b=4(3)
a+0.6+4a+3b+b+0.4=20
5a+4b=19(4)
(4)-(3)×4
a=19-4×4=3千米
b=4-3=1千米
甲每天修3千米,乙每天修1千米
甲原计划修3×50=150千米
乙原计划修1×50=50千米
2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元。求自动笔的单价,和钢笔的单价。
解:设自动铅笔X元一支 钢笔Y元一支
4X+2Y=14
X+2Y=11
解得X=1
Y=5
则自动铅笔单价1元
钢笔单价5元
3、据统计2009年某地区建筑商出售商品房后的利润率为25%。
(1)2009年该地区一套总售价为60万元的商品房,成本是多少?
(2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。
解:(1)成本=60/(1+25%)=48万元
(2)设2010年60万元购买b平方米
2010年的商品房成本=60/(1+1/3)=45万
60/b-2a=60/(b+20)(1)
45/b-a=48/(b+20)(2)
(2)×2-(1)
30/b=36/(b+20)
5b+100=6b
b=100平方米
2010年每平方米的房价=600000/100=6000元
利润=6000-6000/(1+1/3)=1500元
4、某商店电器柜第一季度按原定价(成本+利润)出售A种电器若干件,平均每件获得百分之25的利润。第二季度因利润略有调高,卖出A种电器的件数只有第一季度卖出A种电器的6分之5,但获得的总利润却与第一季度相同。
(1)求这个柜台第二季度卖出A种电器平均每件获利润百分之几?
(2)该柜台第三季度按第一季度定价的百分之90出售A种电器,结果卖出的件数比第一季度增加了1.5倍,求第三季度出售的A种电器的利润比第一季度出售的A种电器的总利润增加百分之几?
解:(1)设成本为a,卖出件数为b,第二季度利润率为c
那么利润=a×25%=1/4a
第二季度卖出电器5/6b件
第一季度的总利润=1/4ab
第二季度利润=ac×5/6b=5/6abc
根据题意
1/4ab=5/6abc
c=1/4×6/5
c=3/10=30%
(2)第一季度定价=a(1+25%)=5/4a
第三季度定价=5/4a×90%=9/8a
第三季度卖出(1.5+1)b=2.5b件
第三季度的总利润=9/8a×2.5b-2.5ab=5/16ab
第三季度比第一季度总利润增加(5/16ab-1/4ab)/(1/4ab)=(1/16)/(1/4)=0.25=25%
5、将若干只鸡放入若干个笼中。若每个笼中放4只,则有一只鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,那么,鸡、笼各多少?
设鸡有x只,笼有y个
4y+1=x
5(y-1)=x
得到x=25,y=6
6、用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y
x+y=36 (1)
2*16x=40y (2)
由(1)得36-y=x (3)
将(3)代入(2)得;
32(36-y)=40y
y=16
又y=16代入(1)得:x=20
所以;x=20
y=16
答:用20张制盒身,用16制盒底.
仅供参考
展开全部
北师大) 八年级上期数学期中试卷
(考试时间:120分钟) 出卷:新中祝毅
填空题(1~10题 每空1分,11~14题 每空2分,共28分)
1、(1)在□ABCD中,∠A=44,则∠B= ,∠C= 。
(2)若□ABCD的周长为40cm, AB:BC=2:3, 则CD= , AD= 。
2、若一个正方体棱长扩大2倍,则体积扩大 倍。
要使一个球的体积扩大27倍,则半径扩大 倍。
3、对角线长为2的正方形边长为 ;它的面积是 。
4、化简:(1) (2) , (3) = ______。
5、估算:(1) ≈_____(误差小于1),(2) ≈_____(精确到0.1)。
6、5的平方根是 , 的平方根是 ,-8的立方根是 。
7、如图1,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是 。
8、如图2,直角三角形中未知边的长度 = 。
9、已知 ,则由此 为三边的三角形是 三角形。
10、钟表上的分针绕其轴心旋转,分针经过15分后,分针转过的角度是 。
11、如图3,一直角梯形,∠B=90°,AD‖BC,AB=BC=8,CD=10,则梯形的面积是 。
12、如图4,已知 ABCD中AC=AD,∠B=72°,则∠CAD=_________。
13、图5中,甲图怎样变成乙图:__ __ ___________________________ _。
14、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。
二、选择题(15~25题 每题2分,共22分)
15、下列运动是属于旋转的是( )
A.滚动过程中的篮球 B.钟表的钟摆的摆动
C.气球升空的运动 D.一个图形沿某直线对折过程
16、如图6,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走( )
A.140米 B.120米 C.100米 D.90米
17、下列说法正确的是( )
A. 有理数只是有限小数 B. 无理数是无限小数
C. 无限小数是无理数 D. 是分数
18、下列条件中,不能判定四边形ABCD为平行四边形的条件是( )
A. AB‖CD,AB=CD B. AB‖CD,AD‖BC
C. AB=AD, BC=CD D. AB=CD AD=BC
19、下列数组中,不是勾股数的是( )
A 3、4、5 B 9、12、15 C 7、24、25 D 1.5、2、2.5
20、和数轴上的点成一一对应关系的数是( )
A.自然数 B.有理数 C.无理数 D. 实数
21、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法
中正确的是( )
A. 小丰认为指的是屏幕的长度; B 小丰的妈妈认为指的是屏幕的宽度;
C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.
22、小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
A. 2m; B. 2.5m; C. 2.25m; D. 3m.
23、对角线互相垂直且相等的四边形一定是( )
A、正方形 B、矩形 C、菱形 D、无法确定其形状
24、下列说法不正确的是( )
A. 1的平方根是±1 B. –1的立方根是-1
C. 是2的平方根 D. –3是 的平方根
25、平行四边形的两条对角线和一边的长可依次取( )
A. 6,6,6 B. 6,4,3 C. 6,4,6 D. 3,4,5
三、解答题(26~33题 共50分)
26、(4分)把下列各数填入相应的集合中(只填序号)
(1)3.14(2)- (3)- (4) (5)0
(6)1.212212221… (7) (8)0.15
无理数集合{ … };
有理数集合{ … }
27、化简(每小题3分 共12分)
(1). (2).
(3). (4).
28、作图题(6分)
如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。请在图中画出 这样的线段。
29、(5分)用大小完全相同的250块正方形地板砖铺一间面积为40平方米的客厅,请问每一块正方形地板砖的边长是多少厘米?
30、(5分)一高层住宅大厦发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口如图,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距离地面多高?
31、(6分)小珍想出了一个测量池塘宽度AB的方法:先分别从池塘的两端A、B引两条直线AC、BC相交于点C,然后在BC上取两点E、G,使BE=CG,再分别过E、G作EF‖GH‖AB,交AC于F、H。测量出EF=10 m,GH=4 m(如图),于是小珍就得出了结论:池塘的宽AB为14 m 。你认为她说的对吗?为什么?
32、(5分)已知四边形ABCD,从下列条件中任取3个条件组合,使四边形ABCD为矩形,把所有的情况写出来:(只填写序号即可)
(1)AB‖CD (2)BC‖AD (3)AB=CD (4)∠A=∠C (5)∠B=∠D
(6)∠A=90 (7)AC=BD (8)∠B=90(9)OA=OC (10)OB=OD
请你写出5组 、 、 、 、 。
33、(7分)小东在学习了 后, 认为 也成立,因此他认为一个化简过程: = 是正确的。
(3分)你认为他的化简对吗?如果不对,请写出正确的化简过程;
(2分)说明 成立的条件;
(3) (2分)问 是否成立,如果成立,说明成立的条件。
(考试时间:120分钟) 出卷:新中祝毅
填空题(1~10题 每空1分,11~14题 每空2分,共28分)
1、(1)在□ABCD中,∠A=44,则∠B= ,∠C= 。
(2)若□ABCD的周长为40cm, AB:BC=2:3, 则CD= , AD= 。
2、若一个正方体棱长扩大2倍,则体积扩大 倍。
要使一个球的体积扩大27倍,则半径扩大 倍。
3、对角线长为2的正方形边长为 ;它的面积是 。
4、化简:(1) (2) , (3) = ______。
5、估算:(1) ≈_____(误差小于1),(2) ≈_____(精确到0.1)。
6、5的平方根是 , 的平方根是 ,-8的立方根是 。
7、如图1,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是 。
8、如图2,直角三角形中未知边的长度 = 。
9、已知 ,则由此 为三边的三角形是 三角形。
10、钟表上的分针绕其轴心旋转,分针经过15分后,分针转过的角度是 。
11、如图3,一直角梯形,∠B=90°,AD‖BC,AB=BC=8,CD=10,则梯形的面积是 。
12、如图4,已知 ABCD中AC=AD,∠B=72°,则∠CAD=_________。
13、图5中,甲图怎样变成乙图:__ __ ___________________________ _。
14、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。
二、选择题(15~25题 每题2分,共22分)
15、下列运动是属于旋转的是( )
A.滚动过程中的篮球 B.钟表的钟摆的摆动
C.气球升空的运动 D.一个图形沿某直线对折过程
16、如图6,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走( )
A.140米 B.120米 C.100米 D.90米
17、下列说法正确的是( )
A. 有理数只是有限小数 B. 无理数是无限小数
C. 无限小数是无理数 D. 是分数
18、下列条件中,不能判定四边形ABCD为平行四边形的条件是( )
A. AB‖CD,AB=CD B. AB‖CD,AD‖BC
C. AB=AD, BC=CD D. AB=CD AD=BC
19、下列数组中,不是勾股数的是( )
A 3、4、5 B 9、12、15 C 7、24、25 D 1.5、2、2.5
20、和数轴上的点成一一对应关系的数是( )
A.自然数 B.有理数 C.无理数 D. 实数
21、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法
中正确的是( )
A. 小丰认为指的是屏幕的长度; B 小丰的妈妈认为指的是屏幕的宽度;
C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.
22、小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
A. 2m; B. 2.5m; C. 2.25m; D. 3m.
23、对角线互相垂直且相等的四边形一定是( )
A、正方形 B、矩形 C、菱形 D、无法确定其形状
24、下列说法不正确的是( )
A. 1的平方根是±1 B. –1的立方根是-1
C. 是2的平方根 D. –3是 的平方根
25、平行四边形的两条对角线和一边的长可依次取( )
A. 6,6,6 B. 6,4,3 C. 6,4,6 D. 3,4,5
三、解答题(26~33题 共50分)
26、(4分)把下列各数填入相应的集合中(只填序号)
(1)3.14(2)- (3)- (4) (5)0
(6)1.212212221… (7) (8)0.15
无理数集合{ … };
有理数集合{ … }
27、化简(每小题3分 共12分)
(1). (2).
(3). (4).
28、作图题(6分)
如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。请在图中画出 这样的线段。
29、(5分)用大小完全相同的250块正方形地板砖铺一间面积为40平方米的客厅,请问每一块正方形地板砖的边长是多少厘米?
30、(5分)一高层住宅大厦发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口如图,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距离地面多高?
31、(6分)小珍想出了一个测量池塘宽度AB的方法:先分别从池塘的两端A、B引两条直线AC、BC相交于点C,然后在BC上取两点E、G,使BE=CG,再分别过E、G作EF‖GH‖AB,交AC于F、H。测量出EF=10 m,GH=4 m(如图),于是小珍就得出了结论:池塘的宽AB为14 m 。你认为她说的对吗?为什么?
32、(5分)已知四边形ABCD,从下列条件中任取3个条件组合,使四边形ABCD为矩形,把所有的情况写出来:(只填写序号即可)
(1)AB‖CD (2)BC‖AD (3)AB=CD (4)∠A=∠C (5)∠B=∠D
(6)∠A=90 (7)AC=BD (8)∠B=90(9)OA=OC (10)OB=OD
请你写出5组 、 、 、 、 。
33、(7分)小东在学习了 后, 认为 也成立,因此他认为一个化简过程: = 是正确的。
(3分)你认为他的化简对吗?如果不对,请写出正确的化简过程;
(2分)说明 成立的条件;
(3) (2分)问 是否成立,如果成立,说明成立的条件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |